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Foreword

Bienvenue à Paris!

Dear colleagues,

It is a real pleasure to welcome you to the 10th International Workshop on Lot Sizing, which
comes back to France, at CNAM Paris, after its first edition in Gardanne ten years ago.

We carry on the tradition of the previous workshops that aim at discussing high quality
research in a relaxed atmosphere. As in the previous editions, the workshop covers recent
advances in lot sizing, including new approaches for classical problems, new relevant problems,
the integration of lot sizing decisions in other problems and presentations of case studies. The
goal of the workshop is also to favor exchanges between researchers and to enhance fruitful
collaborations. Numerous joint works have been fostered by the nine previous editions of the
workshop.

We would like to thank our sponsors for their support in organizing this workshop: CEDRIC,
CNAM Paris for providing us the most suitable space and the access to the Musée des Arts et
Métiers, Mines Saint-Etienne, EURO, EURO Working Group on Lot-Sizing, Labex Mathématique
Hadamard, RFSI Ile de France, ROADEF for enabling free registrations to students.

We wish you a very pleasant and nice stay in Paris, and hope that you will find the workshop
inspiring and productive.

Safia Kedad-Sidhoum, Céline Gicquel, Nabil Absi, Stéphane Dauzère-Pérès
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Modeling and solving an integrated lot-sizing and
bin-packing problem with sequence-dependent

setups

Silvio Alexandre de Araujo
Departamento de Matemática Aplicada, IBILCE, UNESP - Univ. Estadual
Paulista, 15054-000 São José do Rio Preto, SP, Brasil
silvio.araujo@unesp.br

Gislaine Mara Melega
Departamento de Engenharia de Produção, Univ. Federal de São Carlos, SP, Brasil
gislainemelega@gmail.com

Reinaldo Morabito
Departamento de Engenharia de Produção, Univ. Federal de São Carlos, SP, Brasil
morabito@ufscar.br

Abstract

In this study, we are interested in an integration among lot-sizing and bin-
packing decisions, considering the sequence-dependent setups. Due to depen-
dency of the decisions and the addressed features, the problem is modeled as a
mixed-integer nonlinear mathematical model, which considers two approaches
to model the sequence-dependent setups. The mathematical models are lin-
earized and solved by a mixed integer programming solver using separation
cuts. In addition, symmetry breaking constraints are applied. A computa-
tional study using randomly generated data is conducted, in order to analyze
the exact solution strategies to the integrated problem.

1 Introduction

In an industrial environment, several processes occur simultaneously at different 
stages of a production plant. In this paper, we study processes that consider lot-
sizing and bin-packing decisions, more specifically, we are interested in treating these 
decisions in an integrated way.

The Lot-Sizing Problem considers the tradeoff between the setup and inventory 
holding costs to determine the minimal cost of a production plan for one (or several)
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machine(s) in order to meet the demand for each item. In the bin packing problem 
(Single Bin Size Bin Packing Problem (SBSBPP) according to [7]), there is the packing 
of a set of small items of different sizes into a number of large objects of identical 
size. In an analogy of cutting and packing problems, the bin-packing problem is 
characterized by a strongly heterogeneous assortment of small items, in contrast with 
the cutting stock problem that requires a weakly heterogeneous assortment of small 
items. The value, number, or total size of the necessary large objects has to be 
minimized, considering a weakly heterogeneous or strongly heterogeneous assortment 
of large objects.

The idea of integrating these decisions is to comprehend and take into account 
the interdependency, in the sense that an expanded view of the process contributes to 
a better decision-making, consequently to a global solution of the problem. Dealing 
with such integrated problem is challenging to researches, due to the fact that it 
might subsume more than one NP-hard problem. Therefore, this research fits into an 
updated, challenging and promising context of production planning by examining an 
integration among important problems of production processes.

2 Mathematical Models and Solution Methods

Considering the lot-sizing problem, the scheduling decisions manage to sequence the 
final products, whereas in the cutting stock problem, the scheduling decisions deal 
with the processes needed to perform the cutting operations for each object and are 
related to the variation in the number of pieces between two cut objects. A compact 
formulation to model the cutting stock problem is addressed. We consider a deter-
ministic setting, with several time periods, so that the demand of final products can 
be satisfied either from production in the current time period and/or from inventory 
carried over from the previous period. The pieces required to assembly a final prod-
uct in a determined time period can be cut in previous time periods, in this way, 
the synchronization between the problems considers a lead-time of one time period. 
Initial production inventory is considered only to pieces, due to the positive lead-time 
and stockouts are not accepted.

To treat the scheduling decisions in the integrated problem, we consider two dif-
ferent approaches from the literature, which are based on the General Lot-Sizing and 
Scheduling Problem (GLSP) [4] and on the Asymmetric Traveling Salesman Prob-
lem(ATSP) [3, 5]. In both strategies, we take into account sequence-dependent setup 
cost and setup time with the additional feature that setups may be carried over from 
one time period to the next and the setup can be preserved over idle time periods.

In the first mathematical model (GLSP), the idea is to split each time period 
(macro-period) into a fixed number of subperiods (micro-period) with flexible dura-
tion, in which only one setup is allowed in each micro-period, i.e., only one product or
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object can be produced or processed. The length of each micro-period is variable and 
it takes into account the setup time and production time of the product or process 
completed in that micro-period. Therefore, the micro-period decisions determine the 
number, size and sequence in which the final products and objects are performed in 
each time period.

In the second mathematical model, the scheduling decisions are modeled, in each 
problem involved considering the ATSP constraints, in which for each macro-period, 
several types of final products can be produced, as well as several objects can be cut. 
In order to treat the same time structure in both models, the ATSP based model 
aims to find a single sequence to the whole planning horizon for the final products, 
as well as for the objects in the cutting process. For this, the mathematical model 
should be able to save the final preparation state of the previous time period (macro-
period) at the beginning of each time period (macro-period), to perform this, the 
setup carryover is modeled by considering the setup state at the beginning of each 
time period (macro-period) as a decision variable.

Exact solution approaches based on a mixed-integer programming and on a branch-
and-cut procedure are used to find a good feasible solution to the integrated lot-sizing 
and bin-packing problem with sequence dependent setups. The GLSP based model 
is solved by an optimization package, whereas in the ATSP based model, two ap-
proaches are considered. Firstly, we address subtour elimination constraints using a 
polynomial set of linear constraints that are included a priori in the mathematical 
model for each pair of final products and cut objects in each time period. For this 
type of subtour elimination constraints we have tested the approaches proposed in 
[6], an improved version presented in [2] and the addiction case of clique constraints 
[1]. The resulting mathematical model, called MTZ, is solved by an optimization 
package. In the second approach, called DFJ, the subtour elimination constraints are 
dropped from the formulation and added in an interactive fashion, every time they 
are violated at the nodes of the branch-and-bound tree. These subtour elimination 
constraints are added in the model as separation cuts in the branch-and-cut, every 
time an integer solution is found at each node of the branch-and-bound tree to avoid 
generating too many cuts in the tree. We have tested three different ways to add the 
separation cuts.

3 Conclusions

The computational results of the approaches to the integrated problem are compared 
in terms of number of feasible instances, gap and computational time. Considering 
the mathematical models based on ATSP constraints (MTZ and DFJ ), the DFJ 
approach (branch-and-cut) is able to find more feasible solution compared to the 
MTZ, with quite similar values for the computational time. An impact in the number
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of feasible solutions can be seen when the number of time periods increases.
Comparing the two mathematical models presented to the integrated problem, the

model based on the GLSP strategy have a huge difficulty in finding feasible solutions,
compared to the DFJ approach. The DFJ find 48% of the best results in terms of
computational time compared to less than 5% to the GSLP. As a conclusion, we can
say that the chosen approaches to model the scheduling decisions in the integrated
problem are flexible in both environments and suitable for computing changeover
setups.
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A Branch-and-Cut Algorithm for an Assembly
Routing Problem

Masoud Chitsaz, Jean-François Cordeau, Raf Jans (presenter)
HEC Montreal
{masoud.chitsaz,jean-francois.cordeau,raf.jans@hec}@hec.ca

Abstract

We consider an integrated planning problem that combines production, in-
ventory and inbound transportation decisions in a context where several sup-
pliers each provide a subset of the components necessary for the production of
a final product at a central plant. We provide a mixed integer programming
formulation of the problem and propose several families of valid inequalities.
The inequalities are used in a branch-and-cut (BC) algorithm. Computational
experiments on a large set of generated test instances show that the inequalities
significantly improve the performance of the BC algorithm.

1 Introduction

Few studies have considered the integration of production planning with inbound 
transportation for the collection of components from suppliers to assemble a final 
product. Hein and Almeder [1] introduce an integrated production and inbound 
routing problem with multiple components and products. Chitsaz et al. [2] study the 
case with multiple components and one final product but consider the inventory costs 
and storage capacity of the suppliers as well as a component storage area at the plant. 
They assume a one-to-one relationship between the suppliers and components.

We extend the model of Chitsaz et al. [2] to consider the case where each supplier 
may provide a subset of the components necessary for the final product and some 
components can be obtained from more than one supplier. We develop several new 
valid inequalities and through extensive computational experiments show that the 
inequalities notably enhance the performance of the BC algorithm.

2 Problem description
We consider a many-to-one assembly system with n suppliers (N = {1, ..., n}). The 
planning horizon includes l discrete time periods (T = {1, .., l}). To produce the 
final product (indicated by index zero), k distinct components (K = {1, ..., k}) are
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required. We assume that each supplier i may provide a subset of the components
Ki ⊆ K. We define the problem on a complete undirected graph with the node set
N+ = N ∪ {0}, where 0 represents the plant, and the edge set E = {(i, j) : i, j ∈
N+, i < j}. We let K+ = K ∪ {0}. The suppliers as well as the central plant each
have a global capacitated storage area for the components (Li and L, respectively).
Moreover, the central plant has a separate capacitated storage space for the final
product (L0). A fleet of m homogeneous vehicles, each with a capacity of Q, is
available to transport the components from the suppliers to the plant. In each period
t, an amount sikt of component k is made available at supplier i. The decisions to
make include whether or not to produce the final product (yt) and the quantity to
be produced at the plant in each period (pt), the inventory levels (Iikt), supplier visit
schedule (zit) and order in each vehicle route (xijt), and the shipment quantities from
the suppliers to the plant (qijt). A compact formulation for the Assembly Routing
Problem (ARP) is presented as the following MARP model:

(MARP ) min
∑

t∈T

(
upt + fyt +

∑

k∈K+

h0kI0kt +
∑

i∈N

∑

k∈Ki

hikIikt +
∑

(i,j)∈E
cijxijt

)
(1)

s.t.

I00,t−1 + pt = dt + I00t ∀t ∈ T (2)

I0k,t−1 +
∑

i∈Nk

qikt = pt + I0kt ∀k ∈ K,∀t ∈ T (3)

Iik,t−1 + sikt = qikt + Iikt ∀i ∈ N, ∀k ∈ Ki,∀t ∈ T (4)

pt ≤ Cyt ∀t ∈ T (5)

I00t ≤ L0 ∀t ∈ T (6)
∑

k∈K
bkI0kt ≤ L ∀t ∈ T (7)

∑

k∈Ki

bkIikt ≤ Li ∀i ∈ N, ∀t ∈ T (8)

z0t ≤ m ∀t ∈ T (9)
∑

k∈Ki

bkqikt ≤ Qzit ∀i ∈ N, ∀t ∈ T (10)

∑

(j,j′)∈δ(i)
xjj′t = 2zit ∀i ∈ N+,∀t ∈ T (11)

Q
∑

(i,j)∈E(S)

xijt ≤
∑

i∈S

(
Qzit −

∑

k∈Ki

bkqikt

)
∀S ⊆ N, |S| ≥ 2,∀t ∈ T (12)
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pt ≥ 0, yt ∈ {0, 1}, z0t ∈ Z ∀t ∈ T (13)

I0kt ≥ 0 ∀k ∈ K+,∀t ∈ T (14)

Iikt, qikt ≥ 0 ∀i ∈ N, ∀k ∈ Ki,∀t ∈ T (15)

xijt ∈ {0, 1} ∀(i, j) ∈ E : i 6= 0,∀t ∈ T (16)

x0it ∈ {0, 1, 2}, zit ∈ {0, 1} ∀i ∈ N, ∀t ∈ T. (17)

The objective function (1) minimizes the total production, setup, inventory, and 
transportation costs. The constraints (2)-(4) impose the product and components 
inventory flow. Constraints (5) impose the production capacity. Constraints (6)-(8) 
impose the storage capacity of the product and components. Constraints (9) impose 
the limit on the fleet size. Constraints (10) force a vehicle visit whenever components 
are shipped. Constraints (11) are the degree constraints. Constraints (12) are the 
subtour elimination constraints (SEC) and are referred to as generalized fractional 
subtour elimination constraints (GFSEC).

3 Inequalities and Algorithm

We present and discuss three classes of valid inequalities to improve the LP relaxation 
bound for the ARP. The first class contains inequalities of type (l,S,WW) [3]. Some of 
these inequalities take into account the known supply instead of the known demand. 
The second class concerns the cut-set type inequalities. We generalize and extend the 
cut-set type inequalities to provide integer lower bounds on the number of required 
production setups, number of vehicles dispatched, and supplier visits from period 
e = 1 to t ∈ T . The last class includes general inequalities for the ARP, such as the 
adaptation of the Dantzig-Fulkerson-Johnson (DFJ) SECs for multi-period vehicle 
routing problems .

The algorithm applies the valid inequalities at the root node and adds GFSECs 
and DFJs at each node of the search tree. To separate GFSECs, we use CVRPSEP 
[4] and we also propose two heuristic separation procedures. We adapted CCJ-DH, 
the unified matheuristic proposed in Chitsaz et al. [2], to obtain high quality feasible 
solutions as well as cutoff values. In our experiments we set a time limit of one hour 
both for the BC and for CCJ-DH.

4 Computational experiments

We generated three new classes of instances. The first class includes instances where 
each supplier provides a unique component type. The second class represents the case 
where each supplier provides a subset of components. The third class corresponds 
to the situation in which a unique component is offered by all suppliers. Each class
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includes instances with five different planning horizons ranging from 4 to 12 periods
with a step of two. For each planning horizon we consider eight different numbers of
suppliers, increasing by steps of 3. For each combination of the number of planning
periods and suppliers we randomly generated five instances. Overall, 600 instances
are generated for three classes, five planning horizons, eight numbers of suppliers, and
five instances per category.

Table 1 reports a summary of the results on the performance of the BC when the
default or the best-bound search strategies of CPLEX are employed, and either no
inequality (None), only known inequalities or all inequalities (All) are applied. By
comparing %UB and %BUB for each search strategy and each class, one observes the
effect of applying CCJ-DH cutoffs within the BC. Overall, compared to the cases with
no or only known inequalities, using all inequalities in BC with both search strategies
notably increases the number of optimal solutions and significantly improves the %UB
and %BUB for all classes. These results show that our new valid inequalities make a
substantial difference in the success of the BC. We refer to Chitsaz et al. [5] for more
explanations and detailed results.

Table 1: Summary of the results of the BC with the default and the best-bound search
strategies, and with and without the valid inequalities on different instance classes*

Node Valid Class 1 Class 2 Class 3

Selection Ineq. Size #Opt CPU %UB %BUB Size #Opt CPU %UB %BUB Size #Opt CPU %UB %BUB

Default None 200 11 3157 69.6 96.7 200 5 3234 65.4 95.2 200 22 3045 79.6 95.9
Known 200 51 2576 86.3 96.8 200 44 2729 83.9 95.2 200 107 1912 96.1 97.5
All 200 103 1980 91.2 99 200 69 2420 85 97.9 200 155 1205 98.3 99.5

Best-Bound None 200 8 3207 56.5 97.3 200 5 3260 36.9 96.3 200 14 3098 64.5 96.6
Known 200 52 2578 57.3 97.3 200 64 2418 61.8 96.3 200 107 1872 89.8 98.1
All 200 149 1422 84.7 99.4 200 119 1976 74.4 98.7 200 171 938 97.4 99.8

Size: Number of instances, #Opt: Number of optimal solutions

%UB: Average lower bound values as a percentage of the upper bound obtained by the BC without applying the CCJ-DH cutoffs

%BUB: Average lower bound values as a percentage of the BUB

* To calculate the BUB for each BC scenario, we considered the upper bounds obtained by either that BC scenario or CCJ-DH.
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Abstract

We consider a problem where lot-sizing and maintenance planning decisions
are taken simultaneously. The computational complexity of several variants of
the problem are studied depending on whether (i) Maintenance can be done
at any point in time or not, (ii) There is a fixed aging component when start-
ing production, and (iii) There is a minimum age before maintenance can be
performed.

1 Introduction and problem motivation

In industry and in research, production planning and scheduling and maintenance 
planning and scheduling are most often performed independently. Usually, mainte-
nance is first planned based on an estimated failure probability of machine components 
between two maintenance operations. Then, production is planned and scheduled 
given the maintenance plan. Hence, most papers on production scheduling consider 
that maintenance operations are performed at fixed times that are seen as machine 
unavailability periods in the scheduling horizon, see for instance [1] and [4]. In pro-
duction planning, i.e. lot-sizing problems, maintenance is very rarely explicitly taken 
into account. Instead, the production capacity available in a period is reduced if a 
maintenance operation takes place. This is actually one of the motivations to consider 
time-varying production capacity in dynamic lot-sizing problems.

However, in many practical settings, maintenance is flexible and should be per-
formed within a given time window, associated to the allowed risk on the machine. 
More precisely, the duration of each maintenance operation is provided, with its ear-
liest and latest start times. On a scheduling horizon which is usually rather short,
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i.e. less than a day, considering a single or very few flexible maintenance operations 
is often enough. This is the case for instance in [2] and [5]. This flexibility can be 
very useful to maximize productivity by either postponing a maintenance operation 
to complete a production operation or starting early a maintenance operation when 
the machine is idle.

In practice, maintenance operations are not independent in the planning hori-
zon, i.e., there is a maximum time between two consecutive maintenance operations. 
This implies that, if a maintenance operation is planned early in its time window, 
then the next maintenance time window will also be early. Moreover, it is often 
more realistic to consider a maximum number of products produced between two 
consecutive maintenance operations, i.e., the machine only “ages” when it processes 
products. Explicitly considering several related flexible maintenance operations in 
integrated lot-sizing and maintenance problems is important to determine realistic 
optimized plans. In addition to the classical trade-off between setup and inventory 
costs in lot-sizing, the complexity of planning related flexible maintenance opera-
tions and minimizing maintenance costs is added. To our knowledge, [3] are the only 
ones to explicitly include the planning of related flexible maintenance operations in 
a lot-sizing model for multiple items.

Based on the above motivation, we study the single-item integrated lot-sizing and 
maintenance problem with a maximum number of products to be processed between 
two maintenance operations. Our goal is to analyze the complexity of various cases, 
and to propose polynomial algorithms when possible. The main characteristics that 
we consider are: (1) Whether maintenance operations are only performed at the 
beginning of a period or at any point in time in a period, (2) Whether there is 
a minimum age before a maintenance operation can be performed or not and (3) 
Whether the age of the machine is only impacted by the number of processed products 
or also by setups.

2 Problem description & mathematical modeling

Consider the classical dynamic lot-sizing problem where the production periods and 
quantities of a single item have to be to decided on a finite planning horizon discretized 
in T periods, where deterministic demands have to be satisfied. The objective is to 
minimize the total cost, which combines the fixed setup costs and the variable holding 
and production costs.

Although production capacity is unlimited, we assume that preventive mainte-
nance operations, each inducing a fixed maintenance cost, also have to be planned 
on the main machine processing the item. Following a concept often used in main-
tenance, we associate an “age” to the machine, which increases when producing the 
item and is reset to zero after a maintenance operation. A preventive maintenance
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policy has to be followed. More precisely, a maintenance operation cannot be planned
before the machine has reached a minimum age and after the machine has reached a
maximum age.

Note that, without loss of generality and to simplify the notations, we assume
that the parameters and variables related to the age of the machine are expressed in
number of items. The notations are detailed below.

Parameters:
dt: Demand in period t,
Kt: Fixed setup cost in period t,
ht: Unit holding cost in period t,
ct: Unit production cost in period t,
Amin: Minimum age of the machine before maintenance is allowed,
Amax: Maximum allowed age of the machine,
Ft: Fixed maintenance cost in period t,
Af : Fixed age setup, the age increase if the production of an item is setup in a period.

Variables:
xt: Production quantity in period t,
x+
t : Production quantity in period t before maintenance,

x−
t : Production quantity in period t after maintenance,

It: Inventory level in period t,
yt: Setup variable in period t,
at: Reduction in machine age after maintenance in period t,
A−

t : Machine age (in number of items) at the start of period t just before maintenance,
A+

t : machine age (in number of items) at the end period t just after maintenance,
zt: indicator if maintenance performed in period t.

Formulation of basic model:

Based on the network flow representation, the problem can be modelled as:

min
T∑

t=1

(Ktyt + ptxt + htIt + Ftzt) (1)

s.t. It−1 + xt = dt + It t = 1, . . . , T, (2)
xt ≤Myt t = 1, . . . , T, (3)
xt = x−

t + x+
t t = 1, . . . , T, (4)

A−
t = A+

t−1 + x+
t−1 + x−

t + Afyt t = 1, . . . , T, (5)
A−

t ≤ Amax t = 1, . . . , T, (6)
A+

t = A−
t − at t = 1, . . . , T, (7)

Aminzt ≤ at ≤ Amaxzt t = 1, . . . , T, (8)
xt, x

−
t , x

+
t , It, A

−
t , A

+
t , at ≥ 0 t = 1, . . . , T, (9)

yt, zt ∈ {0, 1} t = 1, . . . , T. (10)
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Constraints (2) and (3) are the classical inventory balance and setup-forcing con-
straints. In Constraints (4), the production is split in production before and after
maintenance in a period while, in Constraints (5), the machine age is updated. Note
that we assume that the age setup is accounted for just before a (possible) mainte-
nance operation starts. Constraints (6) ensure that the age of the machine does not
exceed the maximum allowed age. Constraints (7) update the machine age after a
maintenance, and Constraints (8) ensure that updating only occurs when the machine
age is within the appropriate bounds.

3 Main results

Our main results can be summarized as follows. We show that the problem:

• Is a generalization of a capacitated lot-sizing problem in the single-item case,

• Can be solved in polynomial time by dynamic programming when certain pa-
rameters are time-invariant in the single-item case,

• Becomes strongly NP-hard with multiple items.
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Abstract

We study the single-item lot sizing problem with only full batch replenish-
ment under three types of buyback contract for a system of a retailer replenish-
ing from a supplier. In the first buyback contract type, the return periods are 
known in advance and no product return is possible outside those given periods. 
In the second type, the retailer can only return products to the supplier in the 
first j periods, with period j being fixed in the contract terms. Finally, in the 
third form, the retailer can return products only in replenishment periods. The 
quantity of returned products is limited with a coefficient called ’return rate’, 
being either 100% (full return) or less than 100% (partial return). We consider 
the disposal concept to get rid of the products which cannot be stored nor re-
turned to the supplier. We present a mixed integer programming formulation 
for each type, followed by dynamic programming algorithms for some polnomi-
ally solvable cases. We also show the equivalence of the problem for the second 
and third types of buyback contract with partial return to the resource con-
strained shortest path problem with double sided inequality constraints. Some 
results follow.
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1 Problem description & Literature survey

We consider a retailer replenishing from a supplier one type of product over a finite
horizon in a deterministic setting. Both sides sign a buyback contract, consisting in
the possibility for the retailer to return back to the supplier the unused product units
within the authorized periods. The buyback contract has very few parameters: the
selling price (corresponding to the unit purchase price), the return revenue (what the
retailer earns for each product returned), return dates and a return percentage to
respect. Not all the unused units can be returned back to the supplier if the total
quantity exceeds this initial percentage that is fixed in the terms. This is a protection
for the supplier.

In this study, we integrate both Lot Sizing Problem (LSP) decisions and buyback
contract terms’ cost and constraints. The lot sizing problem is used to model the
replenishment part: which quantity to replenish and when to replenish them are
the main decisions made in LSP. Integrated with buyback, the overall decisions also
include when and how much to return back to the supplier. Note that we consider
batch replenishment for LSP part: the product units are loaded into the batches of a
certain limited capacity Vt. Then, the replenishment decision becomes the number of
batches to replenish in each period. We assume that only full batch replenishment is
authorized. In what follows, this integrated problem is called LSP-BB for Lot Sizing
Problem with Batch replenishment under Buyback contract terms.

The buyback contracts arise in several industrial settings. Products with the fol-
lowing properties are often replenished under this special type of contract (Pasternack
(1985), Hou et al. (2010)) :

• Limited life time due to physical decay (dairy products, baked goods, pharma-
ceuticals, cosmetics).

• Risk of obsolescence (fashion apparel, computer hardware and software, greeting
cards, magazines, newspapers).

• High carrying costs or products with rapidly saturated demands (books and
recorded music).

Our problem is positioned in the intersection of various problems. We consider 
LSP with batch replenishment, which is quite well studied in the literature. We 
consider a special type of Capacity Reservation Contract (CRC) which is the buyback 
contract. To the best of our knowledge, it is the first time that the buyback contract 
is integrated into the lot sizing problem in a deterministic and dynamic setting. We 
also consider the disposal option in our problem. See Figure 1 for the position of our 
problem into the literature. Only the most relevant papers appearing in this figure 
are cited at the end of this document.
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Figure 1: Our positioning into the literature, Farhat (2019)

Three types of buyback contract are considered in our study: R1, R2 and R3. 
In R1, the return periods are fixed and given. In R2, the products can be returned 
back only in the first j periods; and in R3, return possibility is only permitted in 
procurement periods. For more details, the reader is referred to the Ph.D manuscript 
of Farhat (2019).

2 Some results
We have proposed efficient polynomial time algorithms for different cases studied. 
Most of them are polynomial time dynamic programming algorithms. For the last 
cases concerning partial return policies for buyback contract types R2 and R3, we have 
shown the equivalence to the Resource Constrained Shortest Path Problem (RCSPP).

The overall complexity results are illustrated in Figure 2. Some notations are 
given as follows. ρ: return percentage, with ρ = 100% being full return and ρ < 100%
partial return; w= return periods (cyclic or acyclic); OFB: only full batch; FTL: full 
truck load; T : number of periods in the overall planning horizon; LSP − BRi: LSP 
with batch replenishment and buyback contract type Ri.
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Figure 2: Our overall complexity results for LSP-BB, Farhat (2019)
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Abstract

We present a branch-and-cut algorithm to tackle a production-routing prob-
lem consisting of multiple products and customers served by a heterogeneous
fleet of vehicles. By considering these decisions together, companies achieve re-
duced inventory and transportation costs compared to when these decisions are
made sequentially. To accelerate the performance of this algorithm, we employ a
decomposition heuristic for determining tactical distribution routes. Customers
are clustered through k-means++ and a location-allocation subproblem based
on their contribution to overall demand, and these clusters remain fixed over
the entire planning horizon. A routing subproblem dictates the order in which
to visit customers in each period. Under four business scenarios, we vary the
degree of flexibility in demand and transportation by considering split deliveries
and backorders, two settings that are not commonly studied in the literature.

1 Introduction

The production-routing problem (PRP) combines the lot-sizing, distribution and 
routing decisions made by single a production facility carrying out all three oper-
ations. This is a typical arrangement for vendor-managed inventory (VMI), where a 
supplier controls the replenishment process for its customers. In this way, the vendor 
ensures that sufficient inventory is maintained at the customer level and can also co-
ordinate its production and deliveries in such a way that manufacturing and vehicle 
capacities are efficiently used.

There are many industries to which PRP applies, for example, furniture [7], bev-
erages [8, 1], and perishable foods [6]. However, few consider the production (or
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replenishment) of multiple items (e.g. [5, 7]), let alone multiple families of items. 
The extension to include an additional item or two is not trivial, especially if the pro-
duction of these items is coordinated. Lot-sizing decisions would now be impacted 
by the fixed cost of setting up manufacturing for a family of items and not just the 
per unit production cost. This makes the lot-sizing portion of the PRP even more 
challenging to solve. Given that PRP is already NP -hard due to the embedded 
traveling salesman problem within the vehicle routing constraints, this added com-
plexity poses challenges in developing appropriate solution methods that can both 
find near-optimal solutions and do so in a reasonable amount of time.

Based on our survey of the literature, there are a few PRP variants that have re-
ceived little attention. These include the coordinated replenishment of multiple items, 
allowance for backorders, a heterogeneous fleet of vehicles, and split deliveries. Also, 
apart from [9], solution approaches tend to first solve for production and distribution 
quantities, and then determine vehicle routes. However, in practice, routes might 
remain fixed over a certain time horizon so that drivers may build rapport with their 
assigned retailers and thus provide better customer service, and so that workloads 
are equitable among drivers [3, 4].

We address these characteristics in our formulation of the multi-item PRP sub-
ject to capacitated and coordinated replenishments. We propose a Tactical Routes 
Heuristic (TRH) to fix customer routes over the planning horizon, reflecting current 
industry practices for equitable routing. Furthermore, we study the impact of flex-
ible demand and transportation restrictions on vehicle utilization and cost using a 
branch-and-cut procedure that is warm-started with TRH solutions.

2 Solution Approach

We approach PRP by applying a Tactical Routes Heuristic (TRH) to determine an 
initial upper bound to PRP . In the first phase, a districting problem is solved to 
create customer clusters (or districts). Customers are clustered based on geographi-
cal proximity and total demands over the planning horizon. This districting problem 
is solved by designating certain customers as district “centers” and then allocating 
customers to them. To initialize district centers, the k-means++ algorithm assigns 
cluster centers based on a weighted probability. In this problem, total horizon de-
mands are used as the weights.

In the second phase, a traveling salesman problem is solved for each cluster to 
determine the optimal customer visit sequence. Since each cluster remains unchanged 
over the time horizon, only production and shipments are determined in the third 
phase. This TRH solution is used to warm-start the branch-and-cut procedure.
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3 Computational Results

TRH and PRP were coded in Python 2.7 with CPLEX 12.8, and run on a PC with
an Intel Core i5 3.41GHz processor and 8GB RAM. We limit our study to the case of
two product families (L = 2), though our formulation and solution approach can be
extended to any value of L. No data sets for the multi-family PRP exist, so we use the
50-customer data instances developed by [2] (Set B50), modified to include multiple
product families and a heterogeneous fleet of vehicles. Four business scenarios, [1A],
[1B], [2A], and [2B], are studied by making slight adjustments to constraints and
variables in the original PRP formulation (see Figure 1).

Figure 1: Business Scenario Nomenclature

We solve all four scenarios with the branch-and-cut algorithm alone and compare 
the results to when branch-and-cut is warm-started with the TRH solution. While 
the branch-and-cut algorithm alone does fairly well on problems of small sizes (fewer 
customers, fewer items, and fewer time periods), the solution quality begins to degrade 
as problems become larger. Solution time increases rapidly, and many problems are 
not solved to optimality. The quality of the solution at the root node is also quite 
poor.

When the branch-and-cut algorithm is warm-started with the results of TRH, the 
overall solution time improves drastically. While larger instances (T = 9, n ≥ 30) still 
do not solve to optimality, the duality gaps are much lower. The solution at the root 
node is much better, suggesting that even these interim solutions may be suitable to 
implement if available computational time is limited.

When comparing scenarios [1A] through [2B] to each other and to TRH solutions 
alone, we can better see the impact of backorders and split deliveries on vehicle uti-
lization, solution time, and overall cost. TRH provides better vehicle utilization and 
computational times compared to all scenarios. Compared to scenarios [1A] and [2A], 
for certain large instances TRH produces items more frequently and incurs higher 
costs. However, compared to [1B] and [2B], TRH has the advantage by incurring less 
in inventory costs by backordering more frequently.

By examining differing scenarios, supply chain managers can better understand 
the cost and vehicle utilization impacts of shifting demand requirements or delaying 
shipments, and can be armed with meaningful information when negotiating terms 
of agreement with clients.
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Abstract

This paper presents a linear model that solves an integrated lot sizing and
transport problem as part of a global supply chain system. The purpose of
the model is to simultaneously propose a production plan, a stock plan and a
transport plan in order to satisfy a known demand on a finite discrete horizon for
a multi-level, multi-product production system. Assuming that local planning
usually leads to sub-optimal solutions, this work is realized in the context of a
global supply chain, which means that it reproduces the overall functioning of
all the subsystems in order to find a solution that takes into account two types
of constraints: local constraints that reflect the specificities of the different
links in the chain. The second type are inter-process constraints, it expresses
the interactions between the different sites and the propagation of the demand
from downstream to upstream in the different subsystems. This planning was
carried out as part of a mining supply chain and takes into account the different
capacities of production, storage and transport for all the components of the
logistics chain, but also the travelling time between the different sites.

1 Introduction

One of the major motivations for this research is to consider the planning problem of 
supply chain planning as a whole, where production, inventory, and transportation 
decisions are integrated. Traditional models usually address only one or two of these 
issues independently of the other(s). The most classical approach was to first plan 
production, and then establish distribution decision, which is equivalent to follow
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the decision-making process to the physical flow of the product. Though, knowing 
that ’local’ planning usually leads to sub-optimal solutions, it goes without saying 
that integrating these decisions can lead to considerable increases in efficiency and 
effectiveness [1] [2] [3]. Also, addressing local problems while trying to improve sup-
ply chain performance might increase supply chain global cost instead of decreasing 
it [4]. IBM is a real-world example who improved its semiconductor supply chain 
efficiency by implementing a unified production, shipping and distribution plan. In 
fact, this global approach allowed IBM to improve its customer service by increasing 
its on-time deliveries by 15 percent, to increase its assets utilization by 2-4 percent of 
costs and to decrease its inventory by 25-30 percent [5]. A second example is from 
McKesson who is healthcare services company who distributes more than one-third of 
all pharmaceutical products in North America. This company started using, at 2010, 
an integrated decision support tool that optimizes their distribution network, supply 
flow, inventory, and transportation policies; this has allowed McKessons pharmaceu-
tical division to reduce its committed capital by more than 1 billion dollars by the 
end of 2012 [6]. Furthermore, Kellogg company reduced its production, inventory, 
and distribution costs by an estimated 4.5 million dollars in 1995 due to its integrated 
operational planning system, and projects to save 35 to 40 million dollars per year 
by using their tactical integrated planning program [7]. Finally, due to its impact, 
several researchers published states of art in issue of the simultaneous planning of the 
different supply chain components [8] [9] [10].

2 Problem desciption and proposed MILP

Taking into account the advantages of a holistic approach instead of treating the 
supply chain problems separately or sequentially, this work deals with the integrating 
production, inventory and distribution planning which are three of the most clas-
sical problems in supply chain management. According to [11], the integration of 
these three problems gives birth to Integrated lot sizing with direct shipment prob-
lem. Thus, this work addresses simultaneously a production, inventory and transport 
problem. The considered transport is system is characterized by a single railway 
train track with delivery time windows. In other words, it integrates a Multi-Level 
Capacitated Lot Sizing (MLCLSP) problem and a train transport problem with de-
livery time windows. The integration of these specific problems in multi-level supply 
chain structure gives birth to an original problem that, to the best of our knowledge, 
has not been addressed in the literature. In order to solve this problem, we propose 
a linear optimization model that takes into account two type of constraints: local 
constraints of the different subsystems composing the global productive system, but 
also the global ones that translates the interactions between these subsystems and 
the spread of the demand along this supply chain. This model calculates simultane-
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ously a production, storage and transport plan that satisfies a known demand while
minimizing total production, storage and distribution costs and maximizing demand
satisfaction rate.

3 Industrial application

The model is tested and validated on a real mining supply chain, it proposes an in-
tegrated solution applicable for simultaneously production, storage and distribution
planning. Our industrial partner has provided us with a large amount of data regard-
ing production costs, production and inventory capacities, shipping costs, and daily
demand for a year-long planning horizon. We have used this information to evaluate
our method under different production scenarios. The program has been solved in few
minutes using Xpress solver. The model proposes for each period, product and site a
production plan a storage plan and a transport plan, which identifies the quantity to
be transported from each production site to the other. In conclusion, we have solved a
real multi-plant, production planning and distribution problem in which production,
inventory, demand and distribution decisions are optimised simultaneously. A math-
ematical formulation for a rich dynamic LSP problem with transport time windows
is proposed. We are now working on comparisons of models and tests and analyzes
of model robustness.
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IWLS’2019 - Amphithéâtre Gaston Planté - Thursday, August 22, 2019 - 10:00/10:30 (30min)

32 sciencesconf.org:iwls2019:285024



[6] K. Katircioglu et al., Supply chain scenario modeler: A holistic executive decision
support solution, Interfaces, vol. 44, no. 1, pp. 85104, 2014.

[7] G. Brown, J. Keegan, B. Vigus, and K. Wood, The Kellogg company optimizes
production, inventory, and distribution, Interfaces, vol. 31, no. 6, pp. 115, 2001.

[8] S. Moons, K. Ramaekers, A. Caris, and Y. Arda, Integrating production schedul-
ing and vehicle routing decisions at the operational decision level: A review and
discussion, Computers Industrial Engineering, vol. 104, pp. 224245, Feb. 2017.

[9] M. Daz-Madroero, D. Peidro, and J. Mula, A review of tactical optimization
models for integrated production and transport routing planning decisions, Com-
puters Industrial Engineering, vol. 88, pp. 518535, 2015.

[10] B. Fahimnia, R. Z. Farahani, R. Marian, and L. Luong, A review and critique
on integrated productiondistribution planning models and techniques, Journal
of Manufacturing Systems, vol. 32, no. 1, pp. 119, 2013.

[11] Y. Adulyasak, J.-F. Cordeau, and R. Jans, Optimization-based adaptive large
neighborhood search for the production routing problem, Transportation Science,
vol. 48, no. 1, pp. 2045, 2014.
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Öykü Naz Attila
Department of Management Science, University of Strathclyde, UK
oyku.attila@strath.ac.uk

Agostinho Agra
Department of Mathematics and CIDMA, University of Aveiro, Portugal
aagra@ua.pt

Kerem Akartunalı, Ashwin Arulselvan
Department of Management Science, University of Strathclyde, UK
kerem.akartunali@strath.ac.uk, ashwin.arulselvan@strath.ac.uk

Abstract

In this paper, we consider a robust lot sizing problem with two levels and 
the option of remanufacturing. The upper level consists of a single item un-
der independent demand, and the lower level consists of multiple components 
under dependent demands. Such a setting often stems from practice, where 
returned products are processed by remanufacturing not a whole unit of a prod-
uct but rather its components, while also manufacturing any further necessary 
components. Therefore, the problem considers a range of decisions, including 
manufacturing and remanufacturing to satisfy lower level demand, assembly of 
components to satisfy upper level demand, and inventory of returned items, 
components, and the final product. The uncertainty in this setting primarily 
stems from the number of items returned (as well as the quality of returned 
items,) and we address such uncertainty by defining uncertainty sets in a robust 
optimization framework. As an efficient solution method, we propose a decom-
position approach with two subproblems, Decision Makers Problem (DMP) 
and Adversarial Problem (AP), which are handled in an iterative fashion. We 
present preliminary computational results with a number of observations and 
insights.
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1 Introduction

There are a number of different ways to achieve product recovery, which enables the
return of used products to the production cycle. The most effective way for product
recovery is remanufacturing, which essentially processes a returned product to at least
the same quality level of a newly manufactured product. Although remanufacturing
has been receiving increasing attention from researchers in various disciplines due
to its significant savings and environmental potentials, the lot-sizing research in this
area is still in its early stages. We refer the interested reader to the recent studies of
[4] and [5] for detailed reviews of accomplishments to date. Before discussing the role
of uncertainty, we formally define the problem of interest in the deterministic setting,
starting with the sets and parameters.

• Set of time periods: t = 1, ..., T

• Set of components required to produce final-level item: c = 1, ..., C

• Set of scenarios considered in DMP: s = 1, ...,S

• m0: cost of assembling demand-level (final) items

• h0: holding cost for the final item

• hc: holding cost for component c, where c = 1, .., C

• Kc: setup cost for component c

• wc: returns holding cost for component c

• mc: manufacturing cost for component c

• rc: remanufacturing cost for component c

We consider multiple components at the second level, and a single manufacturing
decision (denoted as xt

0) on the first level (demand level). Our choice of xt
0 only incurs 

a linear production cost. Note that returns are on the component level (second level).
We have the option of manufacturing (xt

c) or remanufacturing (qt
c) a component, 

where c takes on values from the set of components: c = {1, ..., C}. For production to 
take place a joint setup has to be made, where our setup decision is indicated by the 
binary variable ytc. Once components are produced, they can be kept in components’ 
inventory for a cost of hc, where Itc indicates the number of components that are being 
kept in inventory at time period t. Next, we present the formulation for the problem 
as follows:
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min
T∑

t=1

(
m0x0

t + h0I0t +
C∑

c=1

hcIct

+
C∑

c=1

wc(
t∑

i=1

(Ri − qci )) + mcxc
t + rcqct + Kcyct

)

x0
t + I0t−1 = I0t + Dt ∀t = 1, ..., T , ∀c = 1, ..., C (1)

xc
t + qct + Ict−1 = Ict + x0

t ∀t = 1, ..., T , ∀c = 1, ..., C (2)
t∑

i=1

(Ri − qci ) ≥ 0 ∀t = 1, ..., T , ∀c = 1, ..., C (3)

xc
t + qct ≤Mty

c
t ∀t = 1, ..., T , ∀c = 1, ..., C (4)

Constraint (1) is the flow balance constraint for the final-item level. Similarly, we
use constraint (2) for the component level. Constraint (3) ensures that the returns
inventory level is non-negative. Finally, constraint (4) is the setup constraint, where
a joint setup cost of Kc is incurred if setup takes place for component c on a given
time period.

2 Uncertainty and Robust Problem

As the lot-sizing problem attempts to make decisions for the future, there are naturally
inherent uncertainties with regards to input parameters. Even when a make-to-order
production system with known demand quantities is considered, the uncertainties in-
volved in returned products (whether their quantities or qualities) will remain intact.
In order to address such uncertainties, we consider the robust optimization frame-
work, which does not require probability distributions but rather employs so-called
“uncertainty sets” for parameters. Since the seminal work of [3] suitable for problems
with discrete decision variables, there have been significant advances in the domain
of robust optimization, we refer the interested reader to the extensive review of [2].

Here we introduce the case where returns belong to a budgeted polytope. We
consider the following:

Z(Γ) := {z ∈ [0, 1]T :
t∑

i=1

zi ≤ Γt, ∀t = 1, . . . , T }

U(Γ) := {R ∈ RT
+ : Rt = Rt + R̂tzt, z ∈ Z(Γ)}

Let the following define the extreme points in the set U(Γ). Then, we are seeking 
a solution that remains feasible for the following set of extreme points:

U(Γ) := Conv({R1, R2, . . . , RJ })
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We next present the following robust formulation of the problem:

min
T∑

t=1

(
m0x0

t + h0I0t +
C∑

c=1

(hcIct

+ wcQc
t + mcxc

t + rcqct + Kcyct )
)

x0
t + I0t−1 = I0t + Dt ∀t = 1, ..., T , ∀c = 1, ..., C (5)

xc
t + qct + Ict−1 = Ict + x0

t ∀t = 1, ..., T , ∀c = 1, ..., C (6)

Qc
t ≥

t∑

i=1

(Rs
i − qci )

∀t = 1, ..., T
∀c = 1, ..., C
∀s = 1, ..., J

(7)

xc
t + qct ≤Mty

c
t ∀t = 1, ..., T , ∀c = 1, ..., C (8)

Q, x, q ≥ 0, y ∈ {0, 1}T ×C (9)

This characterisation of uncertainty sets using the convex hull of their extreme
points allows us a decomposition approach such as of [1], where a restricted version
of the robust problem with only a subset of extreme points, called “Decision Maker’s
Problem” (DMP), is solved iteratively with an “Adverserial Problem” (AP), which
generates extreme points for DMP. We will present preliminary results and a number
of observations and insights in this talk.
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Abstract

Motivated by the waste accumulation and the rarefaction of natural re-
sources, legislation and habits are evolving in order to convert unavoidable
production residues into useful and high added-value products. In this context,
we propose and formalize a new single-item lot-sizing problem that considers
the industrial symbiosis between two production units. During the production
process of a main product, a production residue is generated by the first pro-
duction unit. This residue can be considered either as a by-product to be used
as raw materials by the second production unit, or as a waste to be disposed of.
This residue can be either stored with a limited capacity or unstorable. The
second production unit can use this by-product as raw materials or purchase
raw materials from an external supplier. In this work, we prove that the stud-
ied problem is NP -Hard. We develop a solution method based on Lagrangian
decomposition, jointly with a Lagrangian heuristic to provide an upper bound.
We conducted several experiments to show the performance and the limits of
our approach, and to derive managerial insights.

1 Introduction

Industrial symbiosis represents all forms of binding traditionally separate industrial
entities in a joint production system, suitable for providing, sharing and reusing
resources to create mutual added value [3]. One of the most common beneficial
form of symbiotic industrial production is the process by which, by-products of one
production unit become the raw materials for another, as illustrated in Figure 1.
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Application of the industrial symbiosis allows production residues to be used in a
more sustainable way and contributes to the development of a circular economy.

Joint production systems and their applications have been widely studied in the
related literature: semi-conductor fabrication [1], float glass manufacturing [8], food
industry [5], etc. As particular case of joint production systems, the industrial sym-
biosis in production planning is a hot topic of major importance for the transition
towards a circular economy. To the best of our knowledge, only Sridhar et al. [7]
studied a generic non-linear production problem dealing with by-products.

PRODUCTION

main product

residue

Production Unit 1

demand

disposal

PRODUCTION demand

Production Unit 2

by-product

waste

supply
raw materials

Bounded inventory

Unbounded inventory

Figure 1: Process flow diagram of the ULS-IS-BI problem

Given the circular economy concerns and industrial needs, we investigate a single-
item lot-sizing problem for the industrial symbiosis between two production units
(PU1 and PU2) with disposal and purchasing options. This form of production can be
related to the well-studied bi-level production planning problems, where a production
entity has to determine its production plan at each level [2, 6, 9]. As shown in Figure
1, these two levels (i.e. production units) are linked by the by-product created by the
first production unit and used as raw materials by the second one.

The rest of this paper is structured as follows. After the problem statement given
in Section 2, a solution approach based on the Lagrangian decomposition is given in
Section 3. Section 4 explains the instance generation and the methodology used to
evaluate the competitiveness of the proposed approach and derive managerial insights.

2 Problem statement

Consider a bi-level single-item lot-sizing problem including the industrial symbiosis
between two production units PU1 and PU2. These production units may produce
two different products in order to meet their own deterministic demand. We coin our
problem ULS-IS.

PU1 generates a by-product at the same time as the main product. By definition,
by-products are lawful undesirable production outputs, whose further use is economi-
cally and environmentally sustainable. Accordingly, the generated by-product can be
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either disposed of, or sent to PU2 for a unitary cost lower than the unitary disposal
cost.

At the second level, production unit PU2 can choose either to use the by-product
generated by PU1 as raw materials or to order at an external supplier. The unitary
cost of buying the by-product is lower than the purchasing cost of the raw materials.

In addition to the aforementioned costs, the classical costs related to the lot-sizing
problems are included in the objective function for each production unit, namely:
fixed setup costs, unitary production costs and unitary inventory holding cost of the
main product. In the case where the by-product can be stored with a limited capacity,
a unitary holding cost is added in the objective function. The objective function aims
at minimizing the sum of all costs of both PU1 and PU2 occurring over the entire
planning horizon.

By reduction from the capacitated lot-sizing problem [4], Theorem 1 holds.

Theorem 1. The ULS-IS problem is NP -Hard regardless the storability of the by-
product.

3 Lagrangian decomposition algorithm

Given the complexity of the ULS-IS problem (see Theorem 1), we propose a La-
grangian decomposition algorithm to solve the problem under study. To do this,
variables corresponding to the by-product flows are duplicated. This operation leads
to the problem decomposition into two subproblems SP1 and SP2. In the case where
the generated by-product cannot be store, these two subproblems can be solved by
using dynamic programming algorithms running in O(T log T ).

To construct feasible solutions, we propose the following Lagrangian heuristic,
which operates in two phases:

� Smoothing phase: Given the optimal solutions of subproblems SP1 and SP2,
this phase constructs a feasible solution in the following way: (i) if there is
production in PU1 and PU2, then transportation takes place between PU1
and PU2, and the residual quantity is disposed of or purchased, otherwise (ii)
the production process only in PU1 implies the disposal of the generated by-
product and, respectively, the production process only in PU2 necessitates the
raw materials purchasing from an external supplier.

� Improvement phase: This phase consists in moving production quantities
from a period to another one with a view to reducing the disposal and purchasing
quantities. The moves can be done forward or backward.
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4 Experimental study

Numerical experiments are conducted on a large set of heterogeneous instances. To
generate these instances, several critical parameters are identified, namely: (i) the
ratio linking the inventory holding costs of PU1 and PU2, (ii) the setup cost-holding
cost ratio, (iii) the demands of PU1 and PU2, (iv) the size of the planning horizon.
Each of these parameters takes its values in a set of cardinality equal to 3. For each
combination of these parameters and for each of 4 different sizes of the planning
horizon, 10 instances are generated.

To analyze the competitiveness of the proposed solution method based on the La-
grangian decomposition to solve the ULS-IS problem, we carried out the comparison
between:

� The straightforward and facility location models solved by using IBM ILOG

CPLEX solver,

� Different settings of the Lagrangian decomposition algorithm, based on the La-
grangian heuristic given in Section 3 with and without a multi-start procedure.

In order to reveal the managerial and economic implications of the coordination be-
tween production units PU1 and PU2, the comparison between the centralized and
decentralized versions of the ULS-IS problem has been also conducted.
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Abstract

Motivated by the inventory management for blood products, we address the
uncapacitated lot sizing problem for a perishable item that has a deterministic
and fixed life time. We first study the problem with deterministic demand
and derive strong valid inequalities. Then we consider uncertain demand in a
multistage stochastic setting. As the size of the model grows exponentially in
the number of periods, we implement a scenario-wise decomposition method to
obtain lower and upper bounds.

1 Introduction

This study is on extending the lot sizing problem to consider the perishability of 
products. Perishable inventory refers to products that lose their value and quality 
over time and that are disposed after a certain time. Items can be perishable because 
of the rapid changes and developments in the technology as in the case of smart-
phones. On the other hand, they might deteriorate like dairy products, fruits and 
vegetables [1]. Other examples of perishable items are newspapers, flowers, concert 
and game tickets.

Deteriorating inventory is also an important concept in health-care systems. Blood 
platelet is a highly perishable item with a very short lifetime and unpredictable supply 
and demand [2]. Vaccines are also perishable products. They are stored in vials and 
when a vial is opened vaccines can be used only in a safe-for-use time [3].

In the presence of deteriorating inventory minimizing wastage is an important 
aspect of the problem. On the other hand, satisfying the demand on time and min-
imizing the number of shortages are also crucial. In this study, we consider the lot 
sizing problem with perishable items and we take into account both the possibility of 
wastage and shortage.
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2 Literature Review

There are many studies on perishable inventory. Nahmias [4] reviews ordering poli-
cies for perishable inventory problems. He examines problems for both single and 
multiple products with deterministic and stochastic demands. He categorizes the de-
teriorating inventory problem into two categories; fixed life perishability and random 
lifetime. Fixed life perishability refers to problems where products have fixed time of 
expiration, whereas random lifetime refers to problems in which items may decay at 
any time. In this study, we assume fixed life perishability.

Hsu [5] studies the uncapacitated lot sizing problem with perishable products 
where inventory decays with a deterioration rate at each period and the unit holding 
cost is age-dependent. The author represents the problem as a network flow problem 
with flow loss and comes up with a dynamic programming algorithm to solve it. 
He assumes that items are produced, not ordered, so they enter the inventory in 
the production period when they are one period old. In our study, we assume that 
products are purchased. So, they can be at any age when they enter the inventory.

Sargut and Işık [6] consider a similar problem as Hsu [5]. They extend the problem 
by adding capacity constraints. They explore properties of the optimal solutions and 
present a dynamic programming based heuristic for their problem.

0̈nal et al. [7] also study the problem of lot sizing with perishable items. They 
assume that items have deterministic deterioration rate and examine different mech-

anisms to allocate products to the customers. They show that the uncapacitated 
problem can be solved in polynomial time with all allocation mechanism whereas the 
capacitated problem is NP-Hard for some mechanism.

Önal [8] considers lot sizing with perishable items in a two-level supply chain. 
He assumes that customers buy the product with the longest shelf-life and formulate 
algorithms to solve the problem.

For further studies, we refer the reader to the literature review of Janssen et al.
[9] as well as the book of Nahmias [10] on perishable inventory systems.

3 Contributions of the present study
We propose two formulations for the deterministic problem. The first formulation 
is a natural formulation based on production, stock and setup variables whereas the 
second formulation is a facility location formulation. Unlike the classical lot sizing 
problem, when items have a fixed shelf life, the facility location formulation contains 
fewer variables than the natural formulation. Indeed, instances that cannot be solved 
to optimality in half an hour with the natural formulation can be solved within a few 
seconds using this facility location formulation. However, this formulation cannot be 
extended to include age-related constraints, which are rather common in practice. For
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this reason, we strengthen the natural formulation using valid inequalities and use
these inequalities in solving the variant of the problem with additional constraints on
the composition of orders in terms of age. Computational experiments show that the
proposed valid inequalities are very effective in solving the problem and its variant.

In the second part of our study, we consider a multi stage stochastic setting with
uncertain demand. We first test the effectiveness of our valid inequalities in solving
the stochastic problem. Then for larger sizes, we decompose the problem based on
a grouping of scenarios and use the group subproblems to obtain lower and upper
bounds. We report the results of our computational experiments where we test the
effectiveness of different grouping techniques on the quality of the bounds and the
time to compute them.
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Abstract

A perishable product such as many fresh produces has a limited lifespan. In
this research, it is assumed that each product unit can perish after a random
amount of time independently of the other units. The product units are checked
at the end of every period and the perished units are disposed off before the start
of the next period. The objective is to minimize the expected total cost due
to setups, production, inventory holding, shortage and the disposal of perished
units. In this environment, it is possible that a more recently-produced unit
perishes sooner than an older unit. By formulating the problem as a stochastic
dynamic program, some numerical examples show that the FIFO (First-In-
First-Out) rule does not always represent the optimal inventory issuing policy.
Hence, a new inventory issuing rule is proposed in this research based on the
expected remaining lifespan of the units. This is the optimal policy in all of
the test instances and dominates the FIFO rule under the given circumstances.

1 Introduction

When a product is perishable, it has a limited lifespan which can be either a deter-
ministic value or can be a bounded random variable. It is argued in the literature 
that due to various perturbations in the production and handling conditions such as 
changes in the temperature, humidity, packaging, and contact to air and sunlight, the 
lifespan of each product unit can be regarded as a random variable [1].

An operations manager categorizes the product units in the warehouse based on 
their ages, while tracing the age categories can result in a more efficient utilization 
of inventories and consequently in a better cost management, especially by avoiding
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inventory perishability as much as possible. In this environment, the operations
manager uses certain rules to decide simultaneously about (i) the lot sizes in each
planning period and (ii) the order of the age categories that the inventories should
be dispatched to the customers. The latter decision rule is known in the literature
as “inventory issuing rule”. The main inventory issuing rules in the literature are:
FIFO (First-In, First-Out) and LIFO (Last-In, First-Out).

There are two assumptions among many scholars and practitioners in the perish-
able inventory society. First, it is assumed that those units which are produced earlier
perish sooner ([5] page 888). Second, it is assumed that the percent of the perished
units in each period (i.e., the probability of the perishability in a period) increases
as the units get older such that in a given period, those units which were produced
earlier are supposed to perish faster (because of having a higher probability of per-
ishability) ([2] page 1161, [5] page 882). Based on this viewpoint on perishability,
FIFO is commonly supposed to be the optimal inventory issuing rule for minimizing
the total costs of a producer, especially when the lifespan is a fixed value or when a
fraction of units are perished over periods. For example, Janssen et al. (2016) briefly
discuss in their literature review about the recent papers that are related to inventory
issuing rules ([3] page 95). They claim that FIFO rule is always optimal by citing to
the early literature review Nahmias (1982) [4].

In this paper, it is shown that both of the above assumptions are not necessarily
correct for the case of independent perishability of the units in a periodic inventory
control system, where the lifespan of a unit is a bounded random variable which
follows a general (discrete) probability distribution function. And consequently, it
can be shown (numerically) that FIFO is non-optimal when minimizing the total
costs.

In more details, the problem is formulated in the framework of a stochastic dy-
namic program. Then, a new inventory issuing rule is proposed, which is based on
the Expected Remaining Lifespan (ERL) of a perishable product with a general (dis-
crete) random lifespan. Then, computational experiments are provided to assess the
superiority of the proposed issuing rule over FIFO rule.
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Abstract

We address a stochastic and uncapacitated three-level lot sizing and re-
plenishment problem with a distribution structure (3LSPD). We consider one
production plant that produces one type of item over a discrete and finite plan-
ning horizon. The items produced are transported to warehouses and then to
retailers using direct shipments. The objective is to minimize the operational
costs. We use a Benders decomposition approach and develop a Benders-based
branch-and-cut algorithm to solve the problem. We take advantage of the
substructures identified in the decomposition and design efficient procedures
to solve the subproblems obtained. We propose computational enhancements.
In particular, we develop an algorithm to derive Pareto-optimal cuts without
solving an auxiliary problem. We perform computational experiments to assess
the performance of our decomposition approach and see the impact of our en-
hancements. The Benders-based branch-and-cut algorithm we propose clearly
outperforms CPLEX.

1 Introduction

Supply chain planning often takes as a starting point forecasts of the future demand, 
yielding deterministic values for the demand to satisfy. However, if these forecasts are 
misleading, it would result in costly decisions for the companies. Taking uncertainty
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into account can be very beneficial but also increases the difficulty of the operational
problems to be solved.

We address here an integrated three-level lot sizing and replenishment problem
with a distribution structure, in a two-stage decision process (2S-3LSPD). We consider
the supply chain of a general manufacturing company which comprises one produc-
tion plant, several warehouses and multiple retailers. All retailers are linked to a
unique warehouse and each warehouse is linked to the production plant, resulting in
a distribution structure. The flow of goods ordered by the retailers is entirely fixed:
the product goes from the production plant (where it is produced), to a warehouse
(where it is stored) and finally to a retailer (where it is sold). The objective of the
problem is to determine, for each time period, the production quantities at the plant
and the flow of goods between the facilities to minimize the operational costs of the
whole system.

The retailers face a stochastic and dynamic demand for a unique item. The
distribution of the demand for each retailer is assumed to be known, and uncertainty
is taken into account through the use of demand scenarios. In our two-stage decision
process, the demands of each retailer for the entire time horizon are revealed once the
first stage decisions are made. These first stage decisions correspond to the production
and ordering setup decisions for each facility and each time period. The second stage
involves production, replenishment and inventory decisions, which are made once the
demands are revealed. This separation between the first and second stage decisions
is exactly the static-dynamic uncertainty strategy first proposed by Bookinder and
Tan [3] for the stochastic single item LSP.

The motivation to use Benders decomposition on the 2S-3LSPD is to efficiently
solve this problem by exploiting the different substructures that appear in the multi-
commodity formulation presented in Section 2.

2 Benders decomposition

To apply Benders decomposition, we start from the multi-commodity formulation
MC, adapted from Melo and Wolsey [5]. We denote by δkt the Kronecker delta that
takes the value 1 if k = t and 0 otherwise. Let Ω be the finite set of demand scenarios
and let pω be the probability of scenario ω ∈ Ω. We denote by drtω the demand of
retailer r in period t under scenario ω. Let R, T and F be the set of retailers, time
periods and facilities, respectively. Let δw(r) be the warehouse linked to retailer r.
Let yit be a boolean setup variable taking value 1 if and only if there is production
or an order placed by facility i in period t. If we denote by xlrktω the quantities
produced/ordered in level l in period k to satisfy drtω and by σlrktω the stock in level l
at the end of period k to satisfy drtω, the MC formulation is as follows:
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Min
∑

t∈T
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i∈F
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ω∈Ω
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r∈R
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hcpkσ

0r
ktω + hcδw(r)kσ

1r
ktω + hcrkσ

2r
ktω

)
)

(1)

σ0r
k−1,t,ω + x0r

ktω = x1r
ktω + σ0r

ktω ∀ t ∈ T, k ≤ t ∈ T, r ∈ R,ω ∈ Ω (2)
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ktω = δktdrtω + (1− δkt)σ2r
ktω ∀ t ∈ T, k ≤ t ∈ T, r ∈ R,ω ∈ Ω (4)

x0r
ktω ≤ drtωypk ∀ t ∈ T, k ≤ t ∈ T, r ∈ R,ω ∈ Ω (5)

x1r
ktω ≤ drtωyδw(r)k ∀ t ∈ T, k ≤ t ∈ T, r ∈ R,ω ∈ Ω (6)

x2r
ktω ≤ drtωyrk ∀ t ∈ T, k ≤ t ∈ T, r ∈ R,ω ∈ Ω (7)

x0r
ktω, x

1r
ktω, x

2r
ktω, σ

0r
ktω, σ

1r
ktω, σ

2r
ktω ≥ 0 ∀ t ∈ T, k ≤ t ∈ T, r ∈ R,ω ∈ Ω (8)

yit ∈ {0, 1} ∀t ∈ T, i ∈ F. (9)

The objective function (1) minimizes the sum of the setup costs and of the ex-
pected inventory holding costs at each facility for each time period, scit and hcit, 
respectively. Constraints (2)-(4) represent the inventory balance equations for each 
commodity drtω at the different facilities. Constraints (5)-(7) are the setup forcing 
constraints for the different facilities.

When the binary setup decisions are fixed, we obtain a continuous linear problem 
which can be solved efficiently. This framework is well suited for the use of Benders de-
composition. The original idea of Benders decomposition is to partition the complete 
problem into two smaller problems, namely the master problem and the subproblem. 
The master problem is a simplified version of the original problem where only some 
variables have been kept, along with the constraints in which they are the only ones to 
appear. The master problem also contains an artificial variable representing a lower 
bound on the cost of the subproblem. The subproblem is exactly the original problem 
without the constraints that have been kept in the master problem. In this primal 
subproblem, the variables present in the master problem are fixed to given values. 
In our case, we keep the binary setup variables yit in the master problem. The pro-
duction and inventory variables x and σ are present in the primal subproblem, along 
with constraints (2)-(8). The primal subproblem can be decomposed into |R||T ||Ω|
shortest path subproblems, one for each commodity drtω. We solve all these shortest 
paths problems with Dijkstra’s algorithm and derive the dual solution of each sub-
problem by solving additional shortest paths problems. Indeed, the solution of the 
dual subproblem of each commodity leads to the generation of a so-called Benders 
cut which is in our case an optimality cut since the dual subproblems are feasible.

The optimality cuts can be generated from any solution and not only from an 
optimal integer solution to the master problem. Therefore, we solve the 2S-3LSPD 
in a standard branch-and-cut (B&C) framework with the use of callbacks. At each 
node of the B&C tree for the Benders reformulation, the dual subproblems are solved,
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thus generating optimality cuts. Indeed, each dual subproblem acts as a separation
problem to generate cuts.

Even when implemented using callbacks, several features slow down the Benders-
based B&C. We implemented several ideas to speed up the solution process. The first
three ideas aim to improve the lower bound during the search process. First, we add
lower bound lifting inequalities. These inequalities give a better approximation of the
cost of the primal subproblem, given a set of binary setup values. Here, we compute
the minimal holding costs that will be incurred, given a feasible integer solution to
the master problem. Second, we add optimality cuts at the root node, based on
fractional solution. In that case, the primal subproblems to be solved are minimum
cost flow problems. Finally, we take advantage of the integrality requirements on the
master variables when deriving Benders cuts and develop valid inequalities which lead
to better LP relaxation values for the master problem. These inequalities come from
the observation of Bodur and Luedtke [2]. The fourth idea deals with the choice of a
good optimality cut. To tackle this issue, it is possible to solve an auxiliary problem
which returns, among the optimal solutions to the dual subproblem, the best one in
terms of dominance of the cut generated. This cut is called the Pareto-optimal cut.
We developed a specialized algorithm, based on the idea of Magnanti et al. [4] to
derive such cuts without the use of a general purpose solver. Finally, the fifth idea
explores the different ways of aggregating cuts from the different subproblems.

The numerical experiments performed on numerous instances with these enhance-
ments show the superiority of our approach compared to CPLEX.
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Abstract

Multi-item lot-sizing problems faced in industrial contexts are often too
large to be directly solved by standard optimization solvers. To this purpose,
parallelization approaches are very useful to transform the single resolution of a
complex problem into the resolution of smaller independent sub-problems, lea-
ding to much smaller computational times. We first motivate and propose new
practically relevant instances for the Capacitated Lot-Sizing Problem (CLSP)
with lost sales, setup times and target ending inventory. Two ways of paralleli-
zing the problem are then introduced. A first approach is based on a Lagrangian
relaxation of the item binding capacity constraints. We show that the problem
linked to each item can be solved in polynomial time. A second approach uses
a parallelized version of Relax-And-Fix and Fix-and-Optimize heuristics where,
instead of optimizing the time intervals in chronological order at each iteration,
different time intervals are optimized in parallel. The best interval is picked
according to various strategies and is fixed for the following iterations.

1 Industrial context and motivations

A classical dynamic lot-sizing problem consists in planning quantities to be produced 
in each period of a finite horizon, discretized in periods, to satisfy demands, while
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optimizing the trade-off between setup and holding costs. The well-known Capacita-
ted Lot-Sizing Problem (CLSP) considers multiple products and capacity constraints.
For most instances of the literature, solutions of the CLSP have no ending inventory,
because there are no incentives to store products at the end of the planning horizon.
However, as shown for instance in the survey of [5], real-life planning processes are
often conducted in a rolling horizon. Hence, to be practically relevant, plans should
keep enough inventory of some products at the end of the planning horizon, and
should have inventories of some products at the beginning of the planning horizon.

In this work, we focus on a specific and well-know lot-sizing problem: The CLSP
with setup times. Trigeiro et al. [6] created a set of instances for this problem,
that are commonly used as benchmarks or to create benchmarks to validate solution
approaches ([1], [2], [3], [4]). Yet, as discussed earlier, these instances are not realistic
because they consider neither initial nor ending inventories, which leads to start-of-
horizon and end-of-horizon effects (see Figure 1). We are also allowing lost sales as
the satisfaction of all demands cannot be guaranteed in many industrial contexts.

Figure 1: Optimal solution for an instance of Trigeiro et al. [6]

2 Creation of new instances
Following the characteristics of the instances of Trigeiro et al. [6], our assumption is 
that the demand variability over time and between products is small. We propose 
new instances where initial inventories and maximum ending inventories are added 
for each product, as well as a common target ending inventory for all products. The 
objective is to create instances that make sense in a rolling horizon setting. Indeed, 
it is unrealistic to define a target ending inventory for each single product in a given 
period. Using the information on cost components and the capacity, a MIP is solved 
to create new consistent data to complement and modify the instances of Trigeiro et 
al. [6]. The MIP still guarantees that there exists a feasible plan without lost sales.
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3 Parallelization approaches for the CLSP with se-

tup times, lost sales and target ending inventory

In this section, we introduce parallelization approaches for the CLSP with setup times,
lost sales and target ending inventory. The latter characteristic is the main difference
with previous research on related problems. First, a Lagrangian relaxation heuristic
(used for instance in [3]) is considered, which can “naturally” be parallelized. Then,
different ways to parallelize Relax-and-Fix and the Fix-and-Optimize heuristics (used
for instance in [1]) are proposed.

3.1 Lagrangian relaxation heuristic

As in [6] and [3], the capacity constraints are relaxed using Lagrangian multipliers.
When the maximum ending inventory is the same for each product, we show that
the multi-item uncapacitated lot-sizing problem with target ending inventory and
lost sales is polynomially solvable by decomposing into several uncapacitated single-
item lot-sizing problems with ending inventory. At each iteration of the Lagrangian
heuristic, a reconstruction method, following the same principle than in [6], is used
to build a feasible solution. A first production plan is thus determined, that can be
improved by various methods (for instance a parallelized Fix-and-Optimize heuristic).

3.2 Parallelized Relax-and-Fix and Fix-and-Optimize heuris-
tics

Our approach works in two main steps. An initial solution is first obtained using 
a Relax-and-Fix heuristic. This solution is then improved with a Fix-And-Optimize 
heuristic.

In a classical Relax-and-Fix heuristic, sub-problems are optimized chronologically 
for each time interval. Instead, in our parallelized approach, sub-problems are op-
timized in parallel in order to select the best time interval to fix in the following 
iterations. The setups are then fixed for the “best” sub-problem at each iteration in 
an iterative process (see illustration in Figure 2).

To evaluate the quality of each partial solution and define the best interval, several 
score functions are defined. One of the score functions consists in reconstructing a 
feasible solution from the partially optimized solution. We also consider different 
ways to define the time intervals, leading to different resolutions strategies. The 
same approach can be applied to the Fix-and-Optimize heuristic, where the Boolean 
variables outside of the optimized time interval are fixed to a given value rather than 
relaxed.
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Figure 2: Illustration of parallelized Relax-and-Fix heuristic

3.3 Numerical results

Computational experiments were performed on the modified instances of Trigeiro et
al. [6]. In the workshop, we will present and discuss the results of our parallelized
approaches compared to the standard solver IBM ILOG CPLEX and the “classical”
Relax-And-Fix and Lagrangian relaxation heuristics. The different strategies of our
Parallelized Relax-and-Fix and Fix-and-Optimize heuristics will also be compared
and analyzed.
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Abstract

This work focuses on the single-level, multi-product dynamic lot sizing prob-
lem subject to capacity constraints with stochastic demand, where backlogs are
controlled by different service constraint mechanisms. A customizable multi-
stage production planning approach in rolling horizons is introduced, where
decisions for each period are taken in two steps: The setup pattern is deter-
mined some periods in advance based on distribution parameters of demand.
The production quantities, however, are still adjustable, factoring in previous
demand observations in the final decision. The cost function considers addi-
tional costs for short-termed changes of the setup pattern. Adaptations are
only made if the cost reduction justifies additional system nervousness. Model
extensions allow risk averse optimization of the conditional value at risk and
robust optimization for problem instances with limited overtime or late demand
realization.

1 Introduction and problem description

The presented planning approach aims at dealing with the problem of finding optimal 
decisions on both the setup pattern and the production quantities for the single level, 
multi period, multi product lot sizing problem with a single production resource and 
scarce production capacity. Backlogs are allowed and controlled by customer oriented 
service constraints limiting the mean waiting time of demand fulfilment. Setups on 
short notice are more expensive than those scheduled long-termed.

A multi-stage approach is introduced, which takes prior demand realizations into 
account when deciding on the production quantities for subsequent periods. With this 
multi-stage approach meeting a given service level can be guaranteed, which cannot be 
achieved with static approaches. It even allows stochastic lot-sizing without the need 
to allow backlogs, which makes this approach especially valuable for industries where 
backlogs cannot be accepted, such as in supply networks with just-in-time production. 
First results show that the adaptation to demand realizations also results in lower 
total costs.
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2 The responsive multi-stage algorithm

Within the proposed multi-stage planning algorithm production plans are determined
in rolling horizons. Figure 1 shows an examplary production plan determined with
this approach in the current period T2. For each period, decisions are taken in two
steps. As a first step, an initial setup pattern for the respective period is determined
some periods in advance based on distribution parameters of demand, before demand
realizations for that period are known. This ensures a certain level of predictability
and stability of the production plans.

At a later stage the production plan is reoptimized to determine production quanti-
ties. The plan is adapted to demand realizations, factoring in all available demand
information and updated demand forecasts. Already fixed variables are retained.
However, the updated plan can imply changes in the fixed setup pattern, due to
cancelled setups or additional setups scheduled on short notice. Those short-termed
decisions are considered particularly expensive and therefore short-termed adjust-
ments are only applied to react to unexpected demand realizations if unavoidable or
economically reasonable.

T1 T2 T6T5T4T3

Considered

in optimization
Fixed

set-ups

Fixed 

quantities

P3

P2

P1

Demand realized

Set-Up Production Alterable Fixed 

Demand forecast

Figure 1: Exemplary plan determined with the proposed multi-stage algorithm
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3 Backlog control mechanisms

The multi-stage algorithm allows the guaranteed attainment of the target service 
level. However, this might lead to short-termed additional setups resulting in both 
system nervousness and additional costs. Therefore different mechanisms to control 
backlogs are implemented.

Controlling expected service levels
This approach controls backlogs by limiting the expected service level only. If partic-
ularly high demand realizations arise, deviations between the realized and the target 
service level are accepted. As a consequence, in the next reoptimization production 
plan adaptations are made, such that the expected service level reaches the target 
area by the end of the next (rolling) planning horizon. By accepting temporary vio-
lations of the target service level this approach results in the least total costs.

Controlling realized service levels
This approach controls backlogs by limiting the realized service level. If particularly 
high demand realizations arise, additional setups are scheduled to still be able to 
achieve the target service level by additional production. With this procedure the 
target service level can be attained at any time. It can also be applied for stochastic 
lot sizing without any realized backlogs. However, unavoidable additional production 
might lead to an increase in total costs. The objective function can be extended to 
take into account expected costs for additional production as a function of produc-
tion quantities and demand information. Those costs for additional production can 
consist of costs for both additional setups and additional overcapacity. The exten-
sion incentivises dynamic implicit safety stocks, whose levels are chosen endogenously 
depending on current utilization. Those safety stocks reduce the realized total costs 
and increase stability of the production plans.

Cost oriented production plan selection
The approaches mentioned above limit backlogs by setting service level constraints. 
However, each solution, that satisfies this constraint, is feasible. Therefore there 
is no incentive to overachieve the service constraint. Hence the allowed amount of 
backlogs is exploited systematically to reduce expected holding costs. In many cases a 
production plan with less backlogs would only lead to a slight increase in total costs. 
In consequence, the cost oriented production plan selection algorithm determines 
solutions with different levels of service. Figure 2 shows an overview of the algorithm. 
If the increase in total costs for a production plan with higher service levels does not 
exceed a chosen threshold, this plan will be implemented.
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Beginning of period p
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production
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with level X
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production

plan without
realized
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Demand realization for period p + hd - 1

Compare production plans

Choose production plan based on cost thresholds

Fix setup pattern for period p + hs - 1

Fix production quantities for period p + hq - 1

Figure 2: Algorithm for the cost oriented production plan selection

4 Risk averse optimization of the conditional value

at risk

Optimization of the (approximated) mean of total costs can lead to solutions with 
high variance of the distribution of total costs as a function of uncertain demand 
realizations. This effect is particularly strong, if unavoidable additional production 
might become necessary. In optimal solutions often only low safety stocks are pro-
duced, such that additional setups become necessary if high demand realizations arise.

Optimization of the conditional value at risk (CVaR) on the contrary regards risk 
aversion in stochastic optimization by taking into account only a given percentage 
of scenarios with the highest total costs. By optimizing the CVaR in the proposed 
lot sizing approach, higher amounts of safety stocks are produced, which on the one 
hand might lead to a higher mean of total costs, but on the other hand prevent 
additional setups in scenarios with high demand realization and therefore are able to 
reduce the variance of the distribution of the objective function value by improving 
the robustness to high demand realizations.
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Abstract

We propose an efficient branch-and-bound approach for computing the op-
timal (R,s,S) policy parameters under non-stationary stochastic demand. In 
this policy, the inventory position is raised to an order-up-to level S at a review 
instant when the inventory position is at or below reorder level s. To the best 
of our knowledge, no method for computing the optimal policy parameters has 
been reported in the literature.

Our solution is based on the stochastic dynamic programming approach for 
the (s,S) policy. We use a search tree to compute the optimal replenishment 
cycles. To speed up the computations we applied a branch-and-bound technique 
with dynamic programming bounds. These bounds allow the branch and bound 
to prune of up to 99.8% of the search tree without compromising the optimality. 
Numerical experiments show that this technique can solve instances of realistic 
size in reasonable time.
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1 Introduction

Production/inventory theory provides policies for managing and control inventories 
under different constraints and environments. An interesting class of inventory control 
problems is the one that considers the single-location, single-product case under non-
stationary stochastic demand with complete backordering and penalty cost. This 
problem has been extensively studied because of its key role in real-world applications. 
Many inventory control policies can be adopted for this problem [1].

We focus on order-up-to-S strategies, wherein at each order the inventory level 
is raised to the order-up-to-level S, and the order size is decided when the order is 
placed and not at the start of the planning horizon. Three policies are presented in 
the literature for this particular problem: (s,S), (R,S) and (R,s,S). In the (s,S) policy 
the inventory level is raised up to S if it is lower than s. In the (R,S) policy an order 
is placed every R periods to raise the inventory level to the order-up-to-level. In the 
(R,s,S) policy the inventory level is checked every R periods, and if it is less than 
or equal to s an order is placed. Under the non-stationary demand assumption, the 
policies take the form (sn, Sn, Rn) where subscript i denotes the ith period.

If the costs considered are ordering , holding and penalty costs then the (s,S) policy 
is proved to be optimal [2]. However, in many practical applications (R,S) is more 
appealing as it allows orders to be scheduled in advance. Moreover, the addition of a 
review cost compromises the optimality of the (s,S) policy. The review cost is charged 
when we need to assess the inventory level to decide whether to place an order or not. 
This has a strong practical value because it allows us to model inventory assessment 
cost, order cancellation penalty, order preparation cost, etc. These costs would have 
been charged for every period in the (s,S) and added to the order cost in the (R,S). 
The (R,s,S) policy is the most flexible, and is the only optimal policy in the presence 
of non-zero review cost. However, computing (Rn, sn, Sn) policies under stochastic 
non-stationary demand is a computationally hard task. To the best of our knowledge, 
no optimal solution is available in the literature.

2 Method

The problem has n time periods, each with a demand represented by a random 
variable with known probability distribution function. The solution must compute 
the values of δ, s and S that minimize the expected total cost, where: δt is a binary 
variable taking value 1 iff t is a review period; in period t an order will take place 
if t is a review period and the stock level is lower than st; and if an order occurs in 
period t then the inventory will be replenished up to St.

Given a fixed assignment of δ the problem is reduced to the (s,S) policy which 
can be solved as a stochastic dynamic program. The algorithm is widely known in
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literature and it is the most efficient method to compute the optimal (s,S) policy 
parameters. Let Ct(It−1) represents the expected total cost of an optimal policy 
over periods t, . . . n. Each Ct represents a single stage of the dynamic programming 
algorithm. The solution is computed backwards, so Ct depends only on Ct+1. Finally, 
C1(I0), where I0 is the initial inventory, contains the expected cost for the optimal 
(s,S) policy associated to the δ assignment.

No complete method is available to compute the optimal (Rn,sn,Sn)-policy, so we 
shall use a brute force solution as baseline: fix the review moments and compute the 
optimal solution for the resulting (s,S) problem with the stochastic dynamic program; 
repeat for every possible assignment of δ and report the best result.

2.1 Memoization through binary tree
The cost function depends only on the following periods, so the last period can assume 
just two different sets of Cn, depending on whether or not it is a review period. The 
penultimate period can be computed in four different ways, two for each possible 
last period. Iterating this process we can restructure the computations in a complete 
binary tree. If we visit it in pre-order traversal it is possible to avoid recomputing 
the same stages multiple times.

Each node represents the computations of a single stage of the dynamic program-
ming. When we compute the stage represented by a leaf we obtain the (s,S) policy 
associated to a fixed δ assignment represented by the path from the leaf to the root. 
So each leaf represents a (Rn,sn,Sn)-policy.

2.2 Branch and bound technique
The binary tree structure of the solution allows the deployment of branch and bound 
techniques. If we can prove that all the solutions present in the subtree rooted in a 
node are not optimal we can prune the tree without compromising the optimality.

This can be done by comparing the minimum cost of a stage with the cost of the 
optimal solution so far. We can prune the subtree if the first is greater than or equal 
to the second, as the overall cost increases monotonically as we descend in the tree.

This pruning can be made more effective adding pre-computed bounds on the 
minimal cost from a tree level to the leaves. With these bounds we can prune ap-
proximately 75% of the search tree for a 10-period instance and 95% for a 20-period 
one.

If we visit the tree in a random order, we are more likely to find a sub-optimal 
solution earlier. This reduced the number of unpruned nodes by approximately one 
third.
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Figure 1: Computational time over the number of periods for the 4 different solvers.

3 Conclusion

We presented herein the first optimal solution for the (R,s,S)-policy problem with
non-stationary stochastic demand. This technique allows considering the review cost,
usually neglected in the literature, that can be used to model many real-world costs.

Figure 1 shows the computational time required to solve instances of increasing
size. The technique presented herein can solve in reasonable time instances almost
twice as big as the baseline, making it applicable to practical problems.

This work can be used to develop (R,s,S) heuristics and to evaluate their quality
by computing their optimality gap.

References

[1] E. A. Silver, D. F. Pyke, R. Peterson. Inventory Management and Production
Planning and Scheduling. Wiley, 1998.

[2] H. Scarf. The Optimality of (5,5) Policies in the Dynamic Inventory Problem.
Mathematical Models in Social Sciences, Stanford University Press, 1959.
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Abstract

A novel relevant way of modeling uncertainty on demand in the single-item
dynamic lot-sizing problem is proposed and studied. The uncertainty is not
related to the demand quantity, but to the demand timing, i.e., the demand fully
occurs in a period of a given time interval with a given probability. Polynomial
dynamic programs are proposed to solve the problem for the general case of
multiple stochastic demands, and for several special cases.

1 Introduction

This paper tackles a single-item dynamic lot-sizing problem, i.e. quantities to be 
produced or replenished on a finite planning horizon discretized in periods must be 
determined to satisfy time-varying demands. The total cost, combining the fixed setup 
costs and the variable inventory and production costs, must be minimized. Because 
uncertainty is considered, backlog costs associated to delaying the satisfaction of some 
demands in a period are also included in the total cost.

Most of the literature in lot sizing is studying deterministic problems. Recent 
surveys on stochastic lot sizing can be found in [3] . In their survey, [1] show that the 
vast majority of the research literature in single-item stochastic dynamic lot sizing 
considers stochastic demand quantities. Stochastic costs and yield have also been 
studied, also combined with stochastic demands, but stochastic lead times have been 
very rarely considered, see [2] for a single-item lot-sizing problem with stochastic lead 
times.

Our problem setting significantly differs from previous studies because we consider 
that the demands are deterministic in terms of volumes but that their timing might
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be stochastic. More precisely, a given demand quantity might occur in multiple
periods with a given probability to fully occur in each period. This is particularly
true in operational or tactical production and inventory planning on several weeks
with periods of one day, where demands and orders are well established.

2 Problem modeling

We consider the single-item uncapacitated dynamic lot-sizing problem with a planning
horizon of T periods in the classical deterministic sense, as follows:

min
T∑

t=1

ftyt +
T∑

t=1

htst +
T∑

t=1

ctxt (1)

s.t. xt + st−1 − st = Dt t = 1, . . . , T (2)

xt ≤Mtyt t = 1, . . . , T (3)

yt ∈ {0, 1};xt ≥ 0; st ≥ 0 t = 1, . . . , T (4)

For any period t, the variables xt and st represent production and inventory quan-
tities, respectively, and binary yt variables indicate whether a production setup takes
place or not. The objective (1) is to find a minimum cost production plan, where
the total cost consists of fixed setup costs ft (charged only if production is strictly
positive, i.e., yt = 1), per unit inventory holding costs ht, and per unit production
costs ct, respectively, for all periods in the horizon. We also assume all cost parame-
ters to be strictly positive, i.e., no “free lunch”, and no speculative production costs,
i.e., ct +

∑t′−1
`=t h` ≥ ct′ , ∀t, t′ ∈ [1, T ] such that t < t′. The flow balance constraints

(2) ensure on-time satisfaction of demand Dt, whereas the relationship between pro-
duction and setup variables is set by (3), where Mt is an upper bound on xt, e.g.
Mt =

∑T
`=tD`. Constraints (4) are the integrality and non-negativity constraints.

In addition to the deterministic demands Dt, ∀t ∈ [1, T ], that need to be satisfied
on time, we simultaneously consider stochastic demands, as follows. Let [li, ui] ⊂
[1, T ] be an interval, indexed by i, where it is certain that a demand of di will occur
at once in one period, with a probability of pit ≥ 0 for each period t ∈ [li, ui] and
such that

∑ui

t=li
pit = 1. Note that pit = 0 for t ≤ li − 1 and t ≥ ui + 1. Let I be the

set of such intervals with stochastic demand in the planning horizon and, for ease of 
notation, let |I| = n.

We assume that no backlog is allowed for deterministic demands and that, accord-
ingly, no backlog is allowed for any stochastic demand di after period ui. Note that, 
however, stochastic demand di may be satisfied with inventory carried from before li, 
while backlogging is allowed within the interval [li, ui] with a variable backlog cost bt. 
As it is usually the case, we assume that backlog is more costly than inventory, i.e., 
bt > ht ∀t.
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ECi(t) =

ui∑

l=t

hl

ui∑

k=l+1

pik +
t−1∑

l=li

bl

l∑

k=li

pik (5)

Note that the first and second terms of (5) correspond to the expected holding
and backlogging costs, respectively. Also, note that the first term is equal to 0 for
t = ui, and the second term is equal to 0 for t ≤ li.

It is possible to show that arg minECi(t) ∈ [li, ui].

3 Summary of the main results
The various cases that we studied and the main associated results are summarized 
below.

3.1 Stochastic Demand Timing with a Single Interval
In this case, we assume that there is a single interval i with stochastic demand di 
throughout the planning horizon. Because backlog on di is only allowed before ui, di 
is either produced before or at li, i.e., no backlog cost is incurred, or between li + 1 
and ui, i.e., both inventory and backlog costs are incurred.

We first proved that there is an optimal solution in which di is not produced 
in multiple periods, and that if stochastic demand is produced, it is not produced 
in isolation from deterministic demand, thus limiting the number of states in the 
dynamic program. It is then possible to derive a dynamic program with a complexity 
of O(T logT ).

3.2 General Case of Stochastic Demand Timing

Some dominance properties can be defined to differentiate different cases of overlap-
ping intervals. In this section, we look into the general case with multiple intervals 
of stochastic demand timing, where there is no dominance relationship between the 
overlapping intervals.

For the general case, a dynamic program is proposed whose time complexity may 
be exponential. However, in the relevant practical case when the ratio between the 
unit inventory and backlog costs in each period is time independent, i.e., ht = αth 
and bt = αtb with αt > 0 ∀t (or, equivalently, ht/bt = h/b, ∀t), the dynamic program 
has a polynomial time complexity.
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3.3 Special Cases of Stochastic Demand Timing

We study two relevant special cases of stochastic demand timing, which enable us to
show that the dynamic program for the general case has a polynomial time complexity
due to the significant reduction of valid states.

In the first case, none of the intervals with stochastic demand timing overlap, i.e.,
∀i, j ∈ I either li ≥ uj + 1 or lj ≥ ui + 1 holds. In the second case with dominant
overlapping intervals, we assume that, for any pair of stochastic demands di and dj
in I, either di dominates dj or the opposite.

4 Conclusions and Perspectives

Various results and the dynamic programs will be presented in the workshop. The
dynamic programs can be extended to the case with backlog costs on deterministic
demands and on stochastic demands after the last period in the interval.

Various extensions of this work are being investigated, including the case where∑ui

t=li
pit < 1, i.e., there is a probability that demand di may not occur at all. This

implies that some production quantity might end up in inventory and thus be used
to satisfy other demand in the planning horizon.
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1 Introduction

We investigate an extension of the uncapacitated single-item lot-sizing problem (ULS) in which 
the problem parameters, demand and costs, are subject to uncertainty. We consider a multi-stage 
decision process corresponding to the case where the value of the uncertain parameters unfolds 
little by little following a discrete-time stochastic process and the production decisions can be made 
progressively as more and more information on the demand and cost realizations is collected. In 
order to address this problem, we rely on a multi-stage stochastic integer programming approach 
and assume that the underlying stochastic input process has a finite probability space so that the 
information on the evolution of the uncertain parameters can be represented by a discrete scenario 
tree. Halman et al. [4] showed that a special case of the stochastic ULS in which the setup costs are 
set to zero and the uncertain demand can take only two possible values in each period is NP-Hard.

Several research were devoted to the polyhedral study of the mixed-integer linear program ob-
tained when formulating the stochastic ULS on a scenario tree. Guan et al. [3] extended the (l, S) 
valid inequalities to a general facet-defining class called (Q, SQ) for the stochastic variant and proved 
them suffice to describe the convex hull for the two period case. Later, Di Summa and Wolsey ex-
tended the work of Guan et al. [3] by showing that the (Q, SQ) valid inequalities are dominated 
by a set of mixing inequalities and provided some particular cases where these mixing inequalities 
suffice to fully describe the convex hull. More recently, Guan, Ahmed, and Nemhauser [2] proposed 
a general method for generating cutting planes for multi-stage stochastic integer programs based on 
combining valid inequalities for individual scenarios and they provided a new set of valid inequalities 
for the uncapacitated and capacited stochastic lot-sizing problem.

Unfortunately, implicit enumeration methods, such as branch-and-cut algorithms, do not scale 
up well with the size of the scenario tree. Decomposition methods, such as Benders’ decomposition,
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are thus an attractive alternative to tackle instances with large-size scenario trees. In particular, 
the Stochastic Dual Dynamic Programming (SDDP) approach proposed by Pereira and Pinto [5] 
has been widely used to solve large-size multi-stage stochastic linear programs. This approach relies 
on a dynamic programming formulation of the stochastic problem. In this formulation, the overall 
problem is decomposed into a series of single-node sub-problems in which the future costs of the 
decision made at node n are represented by an expected cost-to-go function. In a linear setting, 
the expected cost-to-go functions are piecewise linear convex and can thus be under-approximated 
through a set of supporting hyperplanes. Recently, Zou, Ahmed, and Sun proposed a new extension 
called Stochastic Dual Dynamic integer Programming (SDDiP) of this method in order to solve 
multi-stage stochastic integer programs with binary state decision variables and non-convex expected 
cost-to-go functions. One of their main contributions was to introduce a new class of cutting planes, 
called Lagrangian cuts, which satisfies the validity, tightness and finiteness conditions ensuring the 
convergence of the algorithm.

We propose to develop a stochastic dual dynamic integer programming approach to solve the 
stochastic ULS on large scenario trees. We first investigate a stochastic dynamic programming 
formulation of the stochastic ULS based on continuous state variables. As proposed by Zou, Ahmed, 
and Sun, we reformulate the obtained nodal sub-problems using a binary approximation of the 
inventory decision variables in order to obtain binary state variables. This allows us to use the 
SDDiP algorithm proposed by Zou, Ahmed, and Sun to solve the problem. Second, we propose 
an improved version of the SDDiP algorithm of Zou, Ahmed, and Sun [6] in which a cutting-plane 
generation phase based on continuous state variables is carried out to build a first approximation of 
the expected cost-to-go functions before actually running the SDDiP algorithm.

2 Mathematical formulations

We aim at planning production of a single type of item on a single resource over a planning horizon 
of T periods under uncertain demand and costs. We consider a multi-stage decision process and 
assume a stochastic input process with finite probability space.

The resulting information structure can be represented as a scenario tree (V, E) with T levels 
or stages. Each node n ∈ V corresponds to a single stage tn. Let Vt be the set of nodes belonging 
to stage t. Each node n has a unique predecessor node denoted an belonging to stage tn − 1 and 
represents the state of the system that can be distinguished by the information unfolded up to 
period tn. At any non-terminal node of the tree, there are one or several branches to indicate future 
possible outcomes of the random variables from the current node. Let C(n) be the set of children of 
node n. The probability associated with the state represented by the node n is denoted by ρn and 
the transition probability from node n to its child node m is denoted by ρnm. A scenario is defined 
as a path in the tree from the root node to a leaf node and represents a possible outcome of the 
stochastic input parameters over the whole planning horizon.

The stochastic input parameters are defined as follows for each node n ∈ V: dn represents the 
discrete demand, fn the setup cost, hn the unit inventory holding cost and gn the unit production 
cost. Moreover, we assume that at each stage, the realization of the random parameters happens 
before we have to make a decision for this stage, i.e. we assume that the values of dn, fn, hn and 
gn are known before we have to decide on the production plan at node n ∈ V.

Extensive MILP formulation

Based on the uncertainty representation described above, the stochastic ULS can be reformulated 
as a deterministic equivalent problem in the form of a mixed-integer linear program (MILP). We 
introduce the following decision variables at each node n ∈ V: xn defines the quantity produced,
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yn ∈ {0, 1} is the setup variable and sn represents the inventory level. This leads to the following
MILP formulation:

min
∑

n∈V
ρn(fnyn + hnsn + gnxn) (1)

s.t. xn ≤Mnyn ∀n ∈ V (2)

sn + dn = xn + sa
n ∀n ∈ V (3)

xn, sn ≥ 0 ∀n ∈ V (4)

yn ∈ {0, 1} ∀n ∈ V (5)

The objective function (1) aims at minimizing the expected total cost, over all nodes of the scenario
tree. This cost is the sum of the expected setup, inventory holding and production costs. Constraints
(2) link the production quantity variables to the setup variables. Note that the value of the Mn

constant can be set by using an upper bound on the quantity that can be processed at node n,
usually defined as the maximum future demand as seen from node n. Constraints (3) are the
inventory balance constraints. Constraints (4)-(5) provide the decision variables domain.

Dynamic programming formulation

An alternative to the extensive formulation of the stochastic ULS discussed above is a dynamic
programming formulation involving nested expected cost-to-go functions. This approach decomposes
the original problem into a series of single-node sub-problems which are linked together by dynamic
programming equations.

More precisely, the sub-problem related to node n focuses on defining the production plan for
node n based on the entering stock level, sa

n

, imposed by its parent node an in the scenario tree. Its
objective value comprises two terms: a term related to the setup, production and inventory holding
costs incurred at node n and a term called the expected cost-to-go function which represents the
expected future costs, over all m ∈ C(n), incurred by the production decisions made at node n.

For each node n ∈ V \ {0}, the sub-problem is formulated as:

Qn(sa
n

) := min(fnyn + hnsn + gnxn) +
∑

m∈C(n)
ρnmQm(sn) (6)

s.t. xn ≤Mnyn (7)

sn + dn = xn + sa
n

(8)

xn, sn ≥ 0 (9)

yn ∈ {0, 1} (10)

Here Qn(·) represents the optimal objective value at node n as a function of the entering stock level
sa

n

. The expected cost-to-go function at node n is defined as Qn(·) :=
∑
m∈C(n) ρ

nmQm(·). Note

that for all leaf nodes, i.e. for all n ∈ VT , Qn(·) ≡ 0.

3 Stochastic dual dynamic integer programming

algorithm

The main idea of this algorithm is to solve the stochastic ULS by solving a sequence of single-node 
sub-problems in which the expected cost-to-go function Qn(·) is approximated by a piece-wise linear
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function. Each iteration of the SDDiP algorithm comprises a sampling step, a forward step and
a backward step. In the sampling step, a subset of scenarios is sampled from the scenario tree.
In the forward step, the algorithm then proceeds stage-wise from t = 1 to T by solving, at each
node of the sampled scenarios, a dynamic programming equation with an approximate expected
cost-to-go function. At the end of this step, the state decision variables are stored and a statistical
upper-bound of the problem is computed as the weighted average over all sampled scenarios. In the
backward step, we proceed stage-wise from the last stage T to the root node and solve at each node
a suitable relaxation of the forward problem. The algorithm then adds supporting hyperplanes to
the approximate cost-to-go functions of the previous stage. Finally, the nodal problem solved at the
root node provides a lower bound of the overall problem. The algorithm stops when the upper and
lower bound are close enough, according to a convergence criteria.

In the stochastic ULS, the state variables are the inventory variables, sn, which are defined
as continuous decision variables. Hence, in order to be able to apply the SDDiP algorithm to this
problem, we resort to a binary approximation of the state variables. This binarization is obtained by
replacing the continuous variable sn by a set of binary variables un,λ such that sn =

∑
λ∈B 2λun,λ.

Here un,λ = 1 if coefficient 2λ is used to compute the value of sn, 0 otherwise. Moreover, in order to
generate the cuts during the backward step of the algorithm, we introduce local copies of the binary
state variables. More precisely, zn,λ is an auxiliary decision variable representing the value of the
state variable at the parent node of n, i.e. it is a local copy at node n of the state variable ua

n,λ.
This leads to the following reformulation of the nodal sub-problem for node n ∈ V:

Qn(ua
n

) := min(fnyn + hnsn + gnxn) +
∑

m∈C(n)
ρnmQm(un) (11)

s.t. xn ≤Mnyn (12)
∑

λ∈B
2λun,λ + dn = xn +

∑
λ∈B

2λzn,λ (13)

zn,λ = ua
n,λ ∀λ (14)

xn, sn, zn ≥ 0; yn ∈ {0, 1} (15)

un,λ ∈ {0, 1} ∀λ (16)

where un denotes the vector of binary variables un = (un,0, ..., un,λ, ..., un,B).

We propose an extension of the SDDiP algorithm that consists in carrying out an initial phase
before actually running the SDDiP algorithm. This leads to a two-phase algorithm.

In the first phase (PHASE I), we build a first approximation of the expected cost-to-go functions
by generating cuts based on formulation (6)-(10) which uses continuous inventory state variables
rather than reformulation (11)-(16) which uses a binarization of the inventory state variables. More
precisely, the nodal sub-problem at node n is reformulated by introducing an auxiliary variable σn

representing the value of the inventory variable at the parent node sa
n

. This results in the following
sub-problem:

Qn(sa
n

) := min(fnyn + hnsn + gnxn) +Qn(sn)

s.t. (7), (9), (10)

sn + dn = xn + σn (17)

σn = sa
n

(18)
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Similarly to the SDDiP algorithm, the expected cost-to-function Qn(·) is under-approximated
by a set of cuts:

ψ̃ti(s
n) := min{θt : θt ≥

∑

m∈C(n)
ρnm(ṽml + π̃ml s

n) ∀l = {1, ..., i− 1}} (19)

where ṽml and π̃ml are the coefficients of the cuts generated at iteration l < i.

This leads to the following approximated sub-problem P̃ni (sa
n

, ψ̃ti):

Q̃
n

i
(sa

n

i ) := min(fnyn + hnsn + gnxn) + ψ̃ti(s
n) (20)

subject to (7), (9), (10), (17), (18).
In PHASE I, we generate only strengthened Benders’ cuts. In these cuts, the value of π̃mi is set

to the dual value of the copy constraint (18) in the linear relaxation of P̃ni (sa
n

, ψ̃ti). The value of
ṽmi is set to the optimal value of the Lagrangian relaxation of P̃ni (sa

n

, ψ̃ti) in which the Lagrangian
multiplier of the dualized copy constraint σn = sa

n

is set to π̃mi in the objective function.
In the second phase (PHASE II), we reformulate (6)-(10) by making a binary approximation of

the continuous state variables. Note that any valid cut generated in PHASE I for the formulation
(6)-(10) provides a valid cut for the reformulation (11)-(16) by setting πm,λi = π̃mi ,∀λ ∈ B and
vmi = ṽmi . We then further improve the under approximation of the expected cost-to-go functions by
generating integer optimality, Lagrangian and strengthened Benders’ cuts as done in Zou, Ahmed,
and Sun [6].

We will present some numerical results that show that the initial phase significantly improves
the quality of the solution found by the algorithm proposed in Zou, Ahmed, and Sun [6].
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Stéphane Dauzère-Pérès
Department of Manufacturing Sciences and Logistics, Mines Saint-Etienne,
University Clermont Auvergne, CNRS, UMR 6158 LIMOS
Gardanne, France
Dauzere-Peres@emse.fr

Abstract

In this paper, the capacitated single-item production planning with lost
sales and no setup cost is studied. Although the problem can be solved using
linear programming, fast algorithms are provided for several cases, in particular
when lost sale costs are “dominant”, i.e. when not accepting demands is only
due to limited capacity.

1 Introduction

In this paper, we study a single-item production planning problem with limited pro-
duction capacity and authorized lost sales but with no setup costs. This is a particular 
lot-sizing problem with linear production costs. There have been a large number of 
publications on single-item lot-sizing problems since the seminal paper of [5]. A recent 
literature survey can be found in [2] which, in particular, underlines the importance 
of three different variants of the Wagner-Whitin model, namely lost sales, production 
capacity limitations, and linear production costs (no setup costs).

In this work, we propose polynomial time algorithms to solve problems with these 
three characteristics. We present some characteristics that allow us to develop fast 
algorithms to solve the problems. More particularly, we show that the algorithms of 
[1] and [3] can be adapted to solve some cases in O(T log T ), where T is the planning 
horizon.

In order to distinguish this problem from single-item lot sizing problems of which 
one important characteristic is the setup cost, we use the term “production planning” 
instead of “lot sizing” in the sequel.
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A production plan needs to be established for a single item on a time horizon of
T periods (t = 1, . . . , T ) where not all demands have to be satisfied, i.e. lost sales are
allowed. Lost sales in a period are incurred either because production and inventory
costs to satisfy the lost demand are larger than the lost sale cost, or because of limited
capacity. In the remainder, we call the problem with “dominant” lost sale costs when
lost sales are only due to limited capacity, i.e. lost sale costs are large enough.

When all unitary costs are linear, the problem can be solved as a linear program.
In this paper, fast algorithms are proposed to solve the case with dominant lost sale
costs, and some cases with non-dominant lost sale costs.

Single-item production planning problems with linear production costs can be
solved in polynomial time even if there are capacity restrictions. The problem can
be formulated as a linear programming model which can be solved, in the worst
case, using a general polynomial time algorithm for LPs. However faster dedicated
algorithms were proposed for the case with general production capacities and no lost
sales. [4] consider the lot-sizing problem with linear production cost and bounded
storage capacity. [3] solve a similar problem where capacity restrictions are imposed
on production instead of storage. Finally, [1] study several extensions of the problem
where backordering is allowed and upper bounds are imposed both on production
capacities and backordered quantities. All of these three papers solved the problems
in O(T log T ). However, [4] is the first to solve the particular problem with bounded
inventory. [1] generalize the problem of [4] and solve it without worsening the running
time. [3] present a simple algorithm that does not require any data transformation
compared to [1].

There are two main reasons for lost sales to be chosen as a planning option: i)
When there is not enough capacity and ii) When the marginal profit of the demand
is too low to be justified by investment in capacity extensions or high production and
inventory holding costs. The second situation can be translated by relatively lower
penalty costs. Hence, we distinguish between dominant (high) and non-dominant
lost sale costs.

In our work, lost sales are allowed and different cases are discussed depending
on whether the lost sale costs are dominant or not dominant, and whether they are
constant or time dependent.

2 Problem modeling

To formalize the problem, the notations are introduced below.
Parameters:

dt: Demand in period t,
ct, ht, pt: Production, inventory holding, and lost sale costs per unit of product

in period t,
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ut: Production capacity in period t,
Ut =

∑t
j=1 uj: Cumulative production capacity up to period t,

Dt =
∑t

j=1 uj: Cumulative production capacity up to period t.

Decision variables:
Xt, It, Lt: Production, inventory, and lost sales levels in period t,
qt = dt − Lt: Quantity of demand dt that is accepted.

The linear programming formulation of the production planning problem with lost
sales and linear costs is formalized below:

Min
T∑

t=1

(ctXt + htIt + ptLt) (1)

It−1 + Xt = dt − Lt + It ∀ t (2)

Xt ≤ ut ∀ t (3)

Xt, It, Lt ≥ 0 ∀ t (4)

The objective (1) minimizes the total cost, i.e. the sum of the production cost,
the inventory holding cost, and the lost sale cost. The first set of constraints (2) are
the inventory balance equations. Constraints (3) set an upper bound on production
capacity. Constraints (4) are non-negativity constraints.

When lost sale costs (pt) are dominant, i.e. large enough, lost sales only occur
because of limited capacity. Mathematically, lost sale cost are dominant if the pro-
duction and cumulative inventory holding costs are always smaller than the lost sale
costs, that is, ∀t, j ≤ t, pt > cj +

∑t−1
k=j hj. We set pt = p∀t, when lost sale costs are

time independent.

3 Summary of the main results

3.1 Dominant lost sale costs

The algorithms to solve this problem calculates the cumulative demands (Dt =∑t
j=1 dt) and cumulative capacities (Ut =

∑t
j=1 ut) in each period t starting at t = 1.

In the first period such that Dt − Ut = B > 0, one has to take the decision to reject 
(part of) demands in periods j = 1, . . . , t. Where the lost sale occurs depends on the 
variability of the lost sale costs. Two cases are considered: With constant lost sale 
costs and with time dependent lost sale costs.

A simple algorithm is proposed to solve the case with constant lost sale costs. For 
the case with time dependent lost sale costs, a two-phase procedure is proposed. In 
the first phase, the demands are smoothed by deciding where and how much demand 
to reject. The second phase is a scheduling phase based on the algorithm of [3].
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3.2 Non-dominant lost sale costs

In this section, we assume that the unit production cost is constant, i.e. ct = c,∀t. We
also consider that lost sale costs are relatively small, although several times higher
than inventory holding costs which means that it is more reasonable to store the
product over a certain number of periods rather than losing the sale. However, if
storage capacity is limited this assumption is no longer valid.

Again, a simple algorithm is proposed to solve the case with constant lost sale
costs. The case with time dependent lost sale costs is still being studied.

4 Future research directions

This study can be extended in different ways. An interesting research direction con-
sists in explicitly integrating production planning decisions with sales. In fact, lost
sales are supposed to be “controlled” by the sales department. Actually, they corre-
spond to customer orders which are usually fully accepted or rejected. We believe that
there is a need to bridge the gap between studies on lot sizing/production planning
with lost sales and the literature on order acceptance.
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Abstract

In 1970, Joseph Thomas extended the well-known dynamic lot size model 
of Wagner and Whitin to include variable prices, as well as variable production 
costs. This work extends Thomas’ model to include something called the lag 
effect.

Formally, this work models a disaggregated, finite-horizon, profit-maximizing 
dynamic lot size problem with pricing lag effects in demand. This effect mod-
els the tendency for customers to stock up on a product when it is offered for 
cheap, causing demand to increase in the given time period, while it decreases 
in the next. In effect, lowering the price causes demand to shift backwards in 
time, in addition to increasing demand as in most demand functions.

The problem is to decide in which time periods to produce, how much to 
produce in each period, and which price to set in each period. The objective 
is to maximize the total profit, defined as total revenue minus total setup cost, 
production cost and inventory holding cost.

Three theorems which restrict the amount of possible optimal solutions are 
proved. A solution is then provided to the production horizon problem, a 
sub-problem of the main problem. The production horizon problem is then 
solved with two different models: with and without the lag effect. The optimal 
solutions of these models are then compared for varying values of some key 
parameters.
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1 Introduction

Most mathematical models describing purchasing behaviour consider demand as a
function of price in a single time period. A notable exception is Ahn et al. [2]. Our
model instead deals with demand as a function of the price in the same period, in
addition the price in the previous period. We introduce this demand function in order
to capture the behaviour where customers stock up on a product when it is offered
for cheap. We call this effect the lag effect. In this formulation, setting a low price
will cause some customers to buy for consumption not only in the same period, but
also for the next period. In other words, some of the demand realized in a period
originated from the next. At the same time, some of the current period’s demand
was already realised in the previous period. The periods may give demand to the
previous and take from the next.

Our mathematical model is based on that of Thomas [1]. Ours is a disaggregated
formulation, but the only essential difference is the structure of the demand func-
tion. Thomas proved the five theorems of Wagner and Whitin [3] for his model and
provided a dynamic programming algorithm similar to the one developed by Wagner
and Whitin. This work aims to take steps towards doing the same for our model,
hopefully culminating in a polynomial time exact solution algorithm.

2 Problem description

The model seeks to maximize the total profit, defined as total revenue minus total
setup cost, production cost and inventory holding cost. This is done by setting the
right price pt in each time period t in the time horizon T , and producing the right
amount dit in period i to cover demand in period t. Setup δt must be in effect in
order to produce in each period. The demand function dt in each period is the sum
of all production happening the same period or before, to cover demand in period t.
It is described as a sum of two parts: the lag-independent demand function φt and
the lag function lt, which is the demand transferred to period t from period t+ 1 due
to the lag effect.

Mathematical model

max Π =
T∑

t=1

(dtpt − stδt −
T∑

i=t

htidti) (1)

dt = φt(pt) + lt(pt)− lt−1(pt−1) t = 1, ..., T (2)
t∑

i=1

dit = dt t = 1, ..., T, (3)
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T∑

i=t

dti ≤ Mtδt t = 1, ..., T, (4)

l0(p0) = l0 (5)

lT (pT ) = lT , (6)

pt, dit ≥ 0 i = 1, ..., T, t = i, ..., T, (7)

δt ∈ {0, 1} t = 1, ..., T. (8)

The objective function (1) maximizes the total profit consisting of total revenue 
minus total setup cost, production cost and inventory holding cost. Constraint (2) 
defines the demand function, and constraint (3) links the demand function and the 
production-demand variables. Constraint (4) ensures no production without setup, 
and constraints (5) and (6) are initial and final conditions on the lag function. Finally, 
constraint (7) ensures non-negativity of price and production-demand variables, and 
(8) ensures that the setup variable is binary.

3 Analytical results

In this work we prove theorems 1, 2 and 3 of Thomas [1] for our lag model. In short, 
these theorems say that there exists an optimal solution to the problem, where there 
is no incoming inventory in any period with setup, and that each production amount 
is a sum of the demands of consecutive periods.

This means that there is an optimal solution which can be described as a chain 
of production horizons with no inventory going from one horizon to the next. A 
production horizon is a period with setup followed by some number of periods without 
setup. This number can be zero, in which case the setup period is followed by another 
setup period, and the production horizon is of length one.

In addition to proving these theorems, we also solve the production horizon prob-
lem to optimality. This procedure involves solving a linear equation system.

4 Numerical experiments

We did numerical experiments in order to compare our lag model to the lag-less model 
of Thomas [1]. In these tests, we compared the profit of the lag model to the Thomas 
model while varying three key parameters. We used linear demand functions and lag 
functions, with a particular lag function in mind. We modelled the lag function as 
the demand function of the next period, evaluated at the price of the current period, 
all multiplied by a factor f . Mathematically: lt = fφt+1(pt). The f factor represents 
the fraction of customers that are willing and able to stock up on the product. This
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formulation means that a customer will stock up if he is willing to stock up, and if
the price is acceptable.

The three parameters we varied in the tests were as follows: The constant in
the linear demand function, α, the stockup factor, f , and the time horizon, T . We
compared the two models for the same parameter values, looking at absolute deviation
and percentage deviation.

We found that the lag effect has a non-negligible impact on profit, as the lag model
had 10-20% higher profit in many of the instances. Interestingly, the lag model never
had worse profit than the lag-less model in any of our tests. It is unknown whether
this is true for all possible demand and lag functions and parameter values.

The lag effect seems to have a greater impact on profit when sales volume is high,
as marginal contribution to profit for α showed to increase as α increases. A similar
result was found for the stockup factor f .

Lastly, the experiments showed that production horizons seem to yield diminishing
returns on profit as they get longer. This is likely due to the high marginal cost of
producing for a late period.
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1 Introduction
The electrical energy market has been subject to intensive research specially with the emer-
gence of smart-grids providing more complex energy grids with multiple power sources, 
storage systems and local eco-friendly energy production [3, 7].

The use of batteries as backup in case of power outages is frequent in telecommuni-
cations companies that provide critical services to keep their network equipment always 
active [6]. In this context, for each equipment in the network there exists at least one bat-
tery for backup use and security rules on the battery usage must be considered. Firstly, it 
has to be immediately recharged to its full capacity Bmax after each use. Furthermore, to 
increase the batteries’ lifespan, they must be recharged with a constant boost power PB.
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However, those batteries could also be used for other purposes, such as participating 
in the energy market when they are not being used for backup. Since the energy price is 
not constant on time, batteries can be used in the periods when the energy costs more, also 
called peak-time periods, and recharged when the energy costs less as a strategy to reduce 
the electricity bill [4, 5, 10, 8]. However, there exists a limited amount Umax of energy that 
can be bought at each time period due to the grid capacity. With this bound and the battery 
capacity, trivial strategies such as buying all the energy demand over the planning horizon 
at the cheapest period are not possible. Such an energy market is known as Retail Market.

A second way is to use the batteries to participate to the Curtailing Market, introduced 
for the first time by Lee et a l. [ 9]. In this context, a  company can be called to reduce its 
energy consumption by receiving a reward. Considering a typical energy production and 
distribution system usually composed by generators, transmission and distribution oper-
ators and clients, the transmission operator (TO) is the agent responsible for the energy 
transmission and for the grid stability. When the consumption demand in a system is larger 
than the energy production, the TO has either to use its electrical energy reserves (e.g. call 
nuclear plants to produce more) or to call the customers that have a huge energy demand 
to cut down their consumption for a period (performing a curtailing) giving them a reward 
[1, 9]. Usually, the reward depends on the amount of energy that is cut down during a 
curtailing and rules to participate in this market are priorly contractualized [2].

2 Problem Definition
The problem treated in our study can be formally described as follows. Let us consider a 
customer with an electrical energy demand Wt in each period t over a planning horizon of T 
discrete time periods. The unitary cost Ct used to compute the electricity bill at each period 
t given.

Each curtailing has a minimal (resp. maximal) duration Dmin (resp. Dmax) that must 
be respected. In addition, during a curtailing, a minimum amount of power must be cut 
down at each period of time. In other words, for each period t of a curtailing, there exists 
a maximal amount of energy Ut that can be bought from the supplier. The way such an 
amount is computed is imposed by the TO depending on the country. Our study is based 
on the french context where this amount is defined as W − PC, W  being the mean demand 
forecast over the curtailing. PC is a contractualized power that must be cut down.

Furthermore, a minimum amount of energy Bmin must remain in the battery and the 
battery must be fully charged at the beginning and at the end of the time horizon for network 
safety purposes.

Managing batteries while respecting both usage and market rules is a key aspect to keep 
the network safe at optimal cost. Our paper addresses this aspect in a single battery setting. 
To the best of our knowledge, this is the first study where batteries are used for backup as 
well as to participate in the curtailing market.
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Rules Stock management setting
Battery usage
requirements •Maximal capacity Bmax • Inventory with a limited capacity

• Safety energy level Bmin • Safety stock

• Immediate recharge
• If the inventory is not being used, it must
be replenished

• Constant recharge rate PB
• The inventory is replenished at constant
rate

Curtailing Market
requirements •Minimal curtailing duration Dmin

•Minimum number of consecutive periods
for each stock usage

•Maximal curtailing duration Dmax
• The stock can not be used more than a
maximum number of periods

•Minimal amount of energy that must be
cut down during a curtailing PC

• A minimum number of items must be
supplied from the inventory at any period of time
when the stock is used

Spot Market
requirements

•Maximal amount of energy that can be
bought Umax

• A production capacity on each period is
imposed

Table 1: Relation between the specific rules of the considered problem and the stock man-
agement setting

In this context, the battery can be viewed as a power stock and its management treated as 
a particular production planning problem with specific rules on the i nventory. The battery 
is ready for use and no setup or installation costs are considered, and a new curtailing 
can start only if the battery is fully charged. Schneider et al. [11] studied a single-period 
electrical energy storage system from an inventory model point of view and proposed a 
general translation of technical requirements for energy storage systems into requirements 
for inventory models. In a similar vein, Table 1 presents the relation between the specific 
rules of the considered problem and the stock management setting.

3 Contributions
First part of our study aims at modeling the problem providing the battery usage rules at 
optimal cost as a mixed integer program. However, due to the size of the real instances, 
the model becomes hard to solve. In this context, based at the structure of the problem, a 
polynomial time algorithm is also proposed providing over the planning horizon the battery 
usage rules at optimal cost.

The derived idea is the enumeration of a subset of all possible curtailings that can be 
performed, and the reduction to a longest path problem in a directed acyclic graph (DAG), 
created from the enumerated subset of curtailings.

Formally, a curtailing c can be represented by its start and end times denoted ( fc, lc) 
and by the amount of energy Xc that is cut down over its duration, also called Depth of Dis-
charge. A curtailing can be then defined by the triple ( f c, lc,Xc). Since curtailing duration 
is bounded by Dmin and Dmax, all possible pairs ( fc, lc) can be enumerated in O(T 2) time. 
Originally, X is a continuous variable and can not be extensively enumerated. However, we 
have proved that there exists an optimal solution of the problem for which the value of Xc in
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each curtailing of the solution is either a multiple of PB or a multiple of Ut . Consequently,
for any pair ( fc, lc) there exists at most T values of Xc that needs to be enumerated.

Since a curtailing is defined by c = ( fc, lc,Xc), we are able to compute its potential gain
gc due to the sequences at the battery use and recharge. Firstly, the sequence of recharge
of the battery is imposed by the immediate recharge rule. Secondly, since we know Xc
for each curtailing c, and the cost of purchasing energy at each time period, we can easily
determine how much energy should be consumed from the battery during each period of
the curtailing, in order to minimize the cost.

Finally, a graph G = (V,A) can be created where each enumerated curtailing is repre-
sented by a vertex in V . Two dummy vertices s and t are also added in V . The set of arcs A
is defined as follows:

• for any v1,v2 ∈ V −{s, t},v1 6= v2, an arc from v1 to v2 of weight gv1 is added if v2
can be performed after v1 with respect to the start/end times and the last charging
period.

• for all vi ∈V,vi 6= s, an arc from s to vi of weight 0 is added.

• for all vi ∈V,vi 6= s,vi 6= t, an arc from vi to t of weight gvi is added.

By construction, the graph G is a DAG and the longest path from s to t can be computed
in polynomial time [12]. Let p∗ be a longest path from s to t, the set of vertices in p∗ gives
us directly the set of curtailings to be performed at optimal cost c∗, which is the value of
p∗.

The proposed algorithm works for any variant of the problem such that the computation
of Ut is not influenced by other curtailings. However, in some cases, the computation of Ut
could be influenced by the Depth of Discharge of the curtailing previously performed. In
this context, our algorithm can not be applied.

The complexity of the algorithm is O(V +A), where |V | is bounded by T 3 and |A| by
T 6.
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Abstract

In this work, we study a tactical production, inventory and capacity adjust-
ment planning for a firm using two energy supplies for its production activities: 
an on-site generated renewable energy source and the grid electricity. While 
the renewable energy can be considered as free of use for the firm, the amount 
of energy available typically depends on weather conditions for solar and wind 
powers, and thus varies from period to period. Conversely, the grid energy 
is virtualy unlimited, but is to be purchased from an external provider. We 
consider the single-item lot sizing problem integrated with these two sources of 
energy. The production system we consider has a stationary nominal capacity, 
which can be expanded by installing some temporary capacities. Temporary 
capacities are a multiple of a base value, and a fixed cost is incurred for each 
period an extra capacity is installed. This corresponds typically to change the 
working shift pattern. We have to determine in each period of the time horizon 
the temporary capacity adjustment to set-up, the amount of energy to buy 
from the grid and the quantity to produce, such that the demand is satisfied at 
a minimum cost. We establish that this problem is NP-hard, even with a single 
installable temporary capacity. We also identify several special cases where an 
optimal solution can be efficiently computed in polynomial time.
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1 Introduction

More and more industrial companies are considering the use of on-site renewable 
energy sources to partly or entirely supply their energy, in order to reduce their cost 
and their dependency on external energy providers. This switch in energy supply is 
also a way for industry to reduce the greenhouse gas emissions related to production 
activities. Concrete industrial examples can be found in Wilde (2018) and Merchant 
Wind Power (2016), related to companies installing solar panels and wind turbines 
in their production sites to provide a part or the totality of the electricity required to 
power their plant. However, one difficulty in using on-site renewable energy sources 
is their dependency to weather conditions (sun or wind) : the amount of energy 
supplied can be extremely time-varying, hence, they cannot fully replace grid energy. 
Both sources should be used in coordination in order to find the best trade-off between 
production and energy costs. This means that the renewable energy generation should 
be integrated into the production planning, see Keller et al. (2016), to take advantage 
of its benefits. More references on energy considerations for production planning and 
scheduling can be found in Biel and Glock (2016) and Gahm et al. (2016).

In this study, we focus on a mid-term capacity, production and inventory planning 
problem taking into account two sources of energy (green and grid) to power the 
production activities. The energy required by production activities can be supplied 
either by a free-of-use renewable green source, with a time-varying capacity; or by 
the grid source, available at any required level but incurring a unit cost per kWh 
purchased. We consider a deterministic and dynamic demand, known in each period 
over a finite horizon. In addition to a nominal production capacity, we assume that 
additional temporary capacities can be installed in each period, incurring a fixed 
cost per extra capacity installed. Since we search the trade-off between production, 
inventory and capacity acquisition costs, this problem can easily be modeled as a 
variant of the single-item lot sizing problem.

The contributions of this study are (i) Proposition of a production planning model 
in which capacity adjustment, production, inventory and energy supply decisions 
are simultaneously optimized ; (ii) Complexity classification of the related problems 
in terms of NP-hardness and polynomially solvable cases ; (iii) Proposition of new 
polynomial time algorithms for some particular cases

2 Problem description

The aim is to satisfy without shortage a deterministic demand dt in each period t 
over a time horizon of length T , minimizing total production, capacity installation 
and energy costs. The production system has a nominal stationary capacity C. In 
each period t, up to mt temporary capacities can be installed to extend this nominal
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capacity, each temporary capacity having the same size A and incurring the same
fixed cost ft. The amount of energy available in periods t from the on-site renewable
source translates into a quantity Bt of products can be produced. This capacity is a
soft limit, which can be extended by purchasing electricity from the grid, at a cost of
π+ per unit produced. Notice that we consider a stationary price for the electricity
bought on the grid. Each unit produced, regardless the source of energy used, incurs
a unit cost ct of production, and each unit carried in stock from period t to period t+1
incurs a holding cost ht. We assume non-speculative motives for the unit production
and holding costs. Since these variable costs are linear, this is equivalent to consider
null holding costs and non-increasing unit production costs.

MILP formulation

We consider the following decision variables:
xt : production quantity in period t
yt : the number of installed temporary capacities in period t
e+t : the amount of units produced using grid energy in period t

The problem can be formulated as follows:

min
∑T

t=1(ctxt + ftyt + π+e+t )

s.t. xt ≤ C + ytA ∀t ∈ {1..T} (1)

yt ≤ mt ∀t ∈ {1..T} (2)

xt ≤ Bt + e+t ∀t ∈ {1..T} (3)
∑t

i=1 xi ≥
∑t

i=1 di ∀t ∈ {1..T} (4)

xt, e
+
t ≥ 0, yt ∈ N ∀t ∈ {1..T} (5)

The objective function minimizes the total cost. Constraints (1) enforce the quan-
tity produced to respect the effective capacity of each period. Constraints (2) guar-
antee that the number of installed temporary capacities does not exceed the maximal 
number authorized in a period. Constraints (3) limit the quantity produced in a 
period relatively to the amount of energy available from the green source and the 
amount of energy bought from the grid. Constraints (4) are classical lot sizing con-
straints for demand satisfaction without backlogging nor lost sales. Constraints (5) 
define the feasibility domain of each decision variable.

3 Complexity results & Polynomial cases

We have proven the problem to be NP-hard, even under restrictive conditions, see 
the following theorem :
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Theorem 1. The problem is NP-hard even in the case of a single temporary capacity.
It remains NP-hard for instances with
− Non-Increasing green capacities Bt and stationary fixed cost f
− Non-Decreasing green capacities Bt (and time-varying fixed cost ft)

We have also established that the problem is polynomially solvable for several cases:

• If the green source is sufficient to entirely supply the energy to pro-
duce at full capacity in every period. It corresponds to assume that Bt ≥ C+mtA
∀t. We can disregard the energy constraint, since no electricity is purchased from the
grid in an optimal solution. The problem can be reduced to a lot-sizing problem with
batch delivery, each batch representing the installation of a temporary capacity. It is
solvable in time complexity O(T 3 log T )
• The green source is not sufficient to entirely supply the energy to pro-

duce at nominal capacity in every period. It corresponds to assume that Bt ≤ C
∀t. Structural properties of the solution allow to reduce the problem to a discrete
lot-sizing problem. It is solvable in time complexity O(T 4 log T )
• The amount of energy supplied by the green source is non-decreasing

with time and the fixed cost for installing a temporary capacity is stationary. No-
tice that relaxing one of these conditions render the problem NP-hard. We develop a
greedy-based algorithm to optimally solve the problem in time complexity O(T 4) in
the case of a single temporary capacity.
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Abstract

The one-dimensional cutting stock problem is widely used for reinforcement
steel bar in the construction industry. Diameter sizes of rebars are determined
by the structural designer to provide tensile strength to the structure, and can
be changed if cross-section area per concrete area stays constant. The decision
maker can decide to convert diameter size to generate better cutting patterns
for an effective usage of the resources. Besides, the decision maker deal with
the lot-sizing problem by assuming the multi-period structure of rebar demand.
We study the cutting stock problem in which decision maker decides diameter
size, cutting time, and patterns to minimize the usage of raw material and
holding cost. Note that it differs from the classical cutting stock problem as it
is not known how many pieces should be cut until diameter sizes are chosen.
We propose a pseudo-polynomial formulation and a genetic algorithm to solve
the problem. Computational results are provided.

1 Introduction

One of the major cost items in the construction industry is reinforcement steel rebar 
which is widely used to provide necessary tensile strength to the structures. It is 
crucial to use rebars efficiently to decrease the cost of structures. Each part of the 
structures requires different sizes of these rebars in terms of diameter and length, and 
they can be obtained by cutting large rebars into smaller pieces. Diameter sizes and 
the number of rebars required are determined in a way to obtain necessary tensile 
strength. The chosen diameter size and the number of needed rebar of each structural 
element can be converted into different sizes if conversion rules are followed. Since 
the diameter sizes are convertible, choosing diameter sizes and generating cutting
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patterns together will yield efficient results to avoid trim loss. The problem is to 
determine cutting patterns, diameter sizes, and the number of required rebars to 
minimize the usage of reinforcement steel rebars. Since the diameter is a different 
dimension of the problem in addition to the length dimension, the problem differs from 
classical one-dimensional cutting stock problem (1-D CSP). On the other hand, sizes 
of the diameter dimension are uncertain and convertible to different sizes. Therefore, 
determining the appropriate diameter size is a part of the decision making process. 
Note that diameter sizes are decision variables of the problem and the problem differs 
from the classical two-dimensional cutting stock problem (2-D CSP). The problem 
is defined as a 1.5-dimensional cutting stock problem (1.5-D CSP) in the literature. 
Some construction projects may include more than one building such as multiple unit 
housing projects, holiday sites, public building complexes, etc. The need for rebars 
may occur in different time periods during the construction phase of these projects. 
Besides, some larger building projects may need different diameter rebars in different 
time periods according to the business plan. As a result, the decision maker of the 
construction project should decide the times of procurement and amount of rebars 
before rebars are needed. The aim of the decision maker is to determine the time 
period and cutting patterns of the items, so that trim loss and inventory holding cost 
are minimized. This problem is called the 1.5-dimensional multi-period cutting stock 
problem (1.5-D MPCSP).

2 Solution Approaches

We consider three formulations: Kantorovich [1], pseudo-polynomial arc-flow for-
mulation of Carvalho [3], and reflect formulation of Delorme and Iori [2] to solve 
our problems. Since Kantorovich formulation is weak, we implement Branch&Price 
method by applying Dantzig-Wolfe decomposition. Arc-flow formulation of Carvalho 
[3] is pseudo-polynomial, and it becomes weak when stock capacity increases. De-
lorme and Iori [2] developed the reflect formulation which uses half of the length 
capacity in order to overcome this weakness. We modified these formulations to at-
tack 1.5-D CSP and the 1.5-D MPCSP. Although Reflect formulation is very powerful 
for 1.5-D CSP, it is hard to solve moderate size instances if multi-period structure 
of the problem is considered. Therefore, we propose a genetic algorithm approach to 
solve large size instances of the 1.5-D MPCSP.

3 Experimental Results

We tested our methods on real data from different application areas such as hospitals, 
apartments, business center constructions, etc. According to our experimental results, 
reflect formulation outperforms Kantorovich and arc-flow formulations. However, it
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has difficulties on solving moderate and large size instances of 1.5-D MPCSP. On
the other hand, our genetic algorithm reaches near optimal solution (within 5%) in
a reasonable amount of time. As a result, we propose using reflect formulation for
1.5-D CSP in all instance sizes, and for 1.5-D MPCSP in small size instances. On the
other hand, genetic algorithm is more succesful in solving moderate and large size
instances.
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Abstract

We consider a lot-sizing problem motivated by Liquefied Natural Gas (LNG).
LNG is an alternative transportation fuel. It is supplied from sources with dif-
ferent quality and price, at different costs. LNG is subject to quantity and
quality decay. It is possible to upgrade or downgrade the quality of LNG by
mixing an existing lot with a new one. LNG is provided to customers via
special-purpose stations. We address the lot sizing problem in such a station.
The problem entails finding a minimum-cost replenishment plan satisfying de-
mands over a finite planning horizon, while meeting a minimum quality level.
We initially formulate the problem as a mixed integer non-linear program and
an approximate mixed integer linear program. These models are appealing as
they can be directly fed into commercial solvers. But they are computationally
expensive. Then, we focus on classes of solutions which can be obtained in
polynomial-time and develop several heuristics with varying levels of complex-
ity. We numerically illustrate that our heuristics provide high-quality solutions
in short computational times.

1 Introduction

The vast majority of the inventory management literature on deteriorating products 
addresses problems where product quality decreases over time following a decay pro-
cess. The product is discarded or used for an alternative purpose when the quality
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eventually drops below an acceptable level. In this paper, we consider a system 
where it is possible to interrupt the decay process and upgrade or downgrade quality 
by mixing different loads of the same product—with different levels of quality. This is 
common for many fuels and chemicals. When these substances are mixed, the quality 
of the mixture becomes the weighted average of the quality of the loads involved. The 
inventory policies used in systems involving such substances can exploit this property 
to manage product quality effectively, thereby reducing costs.

Our study is mainly motivated by Liquefied Natural Gas (LNG) inventories. LNG 
is a sustainable fuel used for road and maritime transportation. In order to keep it in 
its liquid state, LNG needs to be stored and transported at −163◦ using specialized 
insulation. However, as there is no perfect insulation LNG is exposed to heat loss. 
This leads to constant boil-off, and, therefore, quantity and quality decay. The loss 
of quality reduces the efficiency of the LNG as a fuel. Besides, the use of low-quality 
LNG may even lead to permanent engine damage. Therefore, it is essential that 
LNG inventories meet a minimum quality level. LNG can be supplied from different 
markets. These differ in terms of quality, price, and ordering costs. It is therefore 
possible to dynamically manage the quality over time by mixing procurement lots 
from different suppliers. LNG is provided to customers via special-purpose stations 
with limited storage capacity. We address the lot sizing problem in such a station. The 
problem entails finding a minimum-cost replenishment plan satisfying deterministic 
demands over a finite planning horizon, while meeting a minimum quality level at all 
times.

2 Background

We consider a multi-supplier lot-sizing problem with quantity and quality decay. 
There is a variety of studies on inventory systems with deterioration. The majority 
of these studies are devoted to the analysis of systems with different deterioration 
processes. For an extensive overview, we refer the reader to Goyal and Giri (2001) 
and Bakker et al. (2012). There is also an extensive literature on inventory systems 
with multiple suppliers, where suppliers are differentiated by means of characteristics 
such as price, ordering cost, capacity, availability, lead time, and quality. The reader 
is referred to Minner (2003) for a review. Our study is closely related to these lines 
of research. However, we significantly deviate from the literature, as in our system it 
is possible to interrupt the deterioration process and upgrade and downgrade quality 
by mixing procurement lots from different suppliers. This requires bringing together 
concepts from inventory systems with deterioration and multiple suppliers. To the 
best of our knowledge, the current study is the first in the literature in this respect.

Our study also has strong ties with the so-called pooling problem (Audet et al., 
2004; Dey and Gupte, 2015). This is a well-known problem which frequently appears
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in the petrochemical industry where crude oils characterized by different levels of 
quality attributes are mixed together in intermediate pools which are subsequently 
used to blend end-products with pre-specified quality requirements. The lot-sizing 
problem we address in the current study can be regarded as a generalized pooling 
problem, where the inventories carried over from one period to the next correspond 
to material flows in between intermediate pools. This analogy makes it possible to 
adapt and extend the well-established models and methods of the pooling problem to 
approach the lot-sizing problem on hand. However, the variants of the pooling prob-
lem where flows between intermediate pools is considered are known to be much more 
computationally challenging as compared to the standard pooling problem (Kolodziej 
et al., 2013).

3 Overview and Results

The problem we consider in this study is a combinatorial optimization problem with 
two almost exclusive components: a lot-sizing component that can be expressed as a 
mixed integer program and a quality-related component that entails non-linear and 
non-convex constraints.

We use a variety of methods to approach this problem. We initially formulate 
the problem as a mixed integer non-linear program. This formulation can be solved 
by one of the standard mixed integer non-linear programming solvers. However, our 
computational study with Baron—one of the most prominent commercial solvers—
shows that the time-efficiency of such a formulation is very poor. This rules out any 
successful implementation. We then use a linearization approach for quality-related 
constraints, motivated by the successful applications in the context of the pooling 
problem. In particular, we make use of the radix-based method which is known to be 
very competitive among existing methods in the literature. This results in a mixed 
integer program which can also be fed into available solvers. While the linearization 
approach leads to significant improvements with respect computational efficiency, the 
model quickly becomes intractable as the length of the planning horizon increases—in 
line with what has been reported in the literature on the pooling problem.

These findings motivate us towards devising heuristics, rather than approaching 
the problem with exact or approximate mathematical models. To that end, we focus 
on classes of solutions which can be obtained in polynomial-time and develop several 
heuristics with varying levels of complexity. Our heuristics are based on the idea of 
decomposing the overall problem into replenishment cycles. This approach leads to 
structural properties which allows us to solve the associated sub-problems efficiently. 
We numerically illustrate that our heuristics provide high-quality solutions in very 
short computational times.
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1 Introduction

In front-end semiconductor manufacturing (also called wafer manufacturing), pro-
duction planning is very complex due to the system characteristics such as re-entrant 
flows, hundreds of operations to perform for each product, many heterogeneous ma-
chines of different types, etc. Efficient production planning is even more crucial in 
high-mix facilities, i.e. with many products and varying demands, which corresponds 
to most of European semiconductor manufacturing facilities.

In production planning, quantities of products to be released at each period of the 
planning horizon must be determined to meet demands at lowest cost while satisfying 
capacity constraints. In semi-conductor manufacturing several operations have to be 
performed in order to produce a given product. In detailed planning, production 
capacity is allocated at the operation level.

A large part of the literature in semiconductor manufacturing focused on modeling 
congestion and its effects on cycle times. The easiest way to consider congestion is 
to use fixed Lead Times (LT), i.e. a fixed delay in number of periods between the 
arrival of products at an operation and their completion time. However, fixed lead 
times do not take into account that the actual lead times depend on the workload of 
resources.

In 1996, Hung and Leachman [4] tackle this issue by proposing an approach that 
iterates between an optimization model and a simulation model. The optimization 
model optimizes the production plan given fixed lead times, and the simulation model 
determines the lead times given the production plan. A more recent way to model 
congestion is the use of Clearing Functions (see e.g. [2] and [1]), i.e. non-linear 
functions that determine the output of a resource according to the workload.

In this work, we study a model that considers flexible lead-times. A column 
generation approach is used to solve the studied problem.
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2 Problem definition

In this section, we define the studied problem. First we introduce the problem with 
fixed lead-times and then we replace fixed lead times by flexible lead times.

We aim at planning the production of P products over a discrete time horizon 
that has two timescales. The time horizon is decomposed into T days and S weeks. 
Demands are expressed per product and per week. Each product needs a sequence of 
operations Lp to be processed on a set of workshops. Each workshop can process a 
finite set of operations and has a finite capacity. The goal is to decide quantities to be 
released per product p, per operation l and per period t (day). The set of operations 
for each product and their resource consumption provide the timing of operations. 
In order to trace production flows, an inventory variable that represents the work in 
process per product, per operation and per period (day) is introduced. A unitary 
work in progress cost is associated with each product and each operation. We also 
introduce a unitary inventory cost and a unitary backlogging cost for each product 
and each period (week). We also assume that for each operation, a product need to 
wait LTpl periods before being processed. This is called a Fixed Lead Time. The goal 
is to satisfy demands while minimizing inventory, backlogging and work in process 
costs. The resulting model is a Linear Program.

The main constraints are: flow conservation constraints that ensure the link be-
tween the output of an operation and the input of the next operation, flow conserva-
tion constraints of the work in progress, flow conservation constraints that guarantee 
that fixed lead times are satisfied, flow conservation constraints for final products, 
ensuring the satisfaction of demands, and capacity constraints that limit, in each 
workshop, the quantities that can be processed. All decision variables are continuous 
and non-negative.

The flaws of this model mostly reside in Fixed Lead Time constraints that were 
already discuss in [3]. Authors also presented a more flexible way of modeling lead 
times called WIP penetration constraints (introduced by Hwang and Chang in 2003 
[5]). WIP penetration constraints allow more freedom in production runs in order to 
obtain more balanced workloads, but introduces much more decision variables and 
constraints and constraints that limit the set of operations that can be performed dur-
ing the same period. In the following section, we propose a new mathematical model 
based on timed production routes as an alternative to the classical straightforward 
formulation (as described above).

3 A new formulation using timed production routes

In this section, we propose a new mathematical formulation based on timed produc-
tion routes. A timed production route is associated with a given product and provides

IWLS’2019 - Amphithéâtre Gaston Planté - Friday, August 23, 2019 - 11:00/11:30 (30min)

106 sciencesconf.org:iwls2019:281521



the assignment of its operations to periods. The flows of WIPs are embedded within 
the set of all feasible production routes. Given the set of all feasible timed production 
routes, we derive a model that allocates production quantities to timed production 
routes in order to meet demands of final products while satisfying production capacity 
constraints and flow balance constraints for final products. To each timed production 
route and each period, a binary parameter is defined to indicate whether an operation 
is processed or not. A unitary cost is calculated for each timed production route. It 
provides the unitary cost of managing the WIP. We also introduce a new decision 
variable that decides the quantity to release on each timed production route. The 
objective function is to minimize the total inventory, backlogging and work in process 
costs. The resulting model is a Linear Program with a huge number of timed pro-
duction routes. In order to solve this model, we use a column generation approach to 
generate useful timed production routes.

4 Column generation approach

In order to improve the tractability of the formulation based on timed production 
routes, we use a column generation approach. Rather than solving the model that 
considers all timed production routes, we define a reduced master problem based 
on a set of limited number of timed production routes (columns) that is enriched 
with new timed production routes in an iterative scheme. New timed production 
routes are obtained by solving a sub-problem for each product. The goal of each sub-
problem is to provide new timed production routes (columns) with negative reduced 
costs in order to improve the objective function of the master problem. The column 
generation stops when the optimal solution of sub-problems does not provide a timed 
production route (column) with a negative reduced cost.

A sub-problem is defined for each product. It consists in solving an assignment 
problem that assigns each operation to the period where it is processed. This as-
signment satisfy all internal flows constraints. For the problem with fixed lead times, 
the assignment of the first operation provides the timing of all other operations. On 
the other hand, for the problem with WIP penetration constraints, more freedom 
is given, so the assignment of operations to periods should satisfy WIP penetration 
constraints and is driven by dual costs associated with capacity constraints and flow 
conservation constraints of final products.

To solve the resulting sub-problems a dynamic programming algorithm is devel-
oped. This dynamic program is a labeling algorithm. The first label is generated by 
the assignment of the first operation to a given period. Each label is extended to the 
next period by assigning between 0 and the maximum number of operations that can 
be executed in the same period. So each label can generate up to a maximum number 
of new labels per period and per operation. Dominance rules are used in order to
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reduce the number of generated labels. Note that the evaluation of labels considers
dual costs.

5 Conclusion

In this work, we introduce a new method to deal with semiconductor flow complexity
in production planning. Numerical experiment on a literature and industrial data sets
will validate this approach. Several improvements to the timed production routes
generation should be discussed and tested: what is the best way to tune column
generation, how to accelerate the current implementation, which heuristic could be
used to speed up the column generation, which realistic rules should be imposed to
timed routes and what are their impacts on the solution quality.
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